Flexible Multiple Description Coding
of Audio

Janusz Klejsa

§ FlexCode Public Seminar

Tampere, June 16, 2008

SIP - Sound and Image Processing Lab, EE, KTH Stockholm



Flowlladt Outline

Flexible Audio Coder

Multiple Description Coding (MDC) in a Nutshell
Application to Audio Coding

* Conclusions

SIP - Sound and Image Processing Lab, EE, KTH Stockholm



Florllads Problem & Background

* Networks:
— Heterogeneity increasing
— Inherent variability (mobile users)
— Layered structure well established (>20 years of OSI)

» Coders:
— Designed for a specific environment

— Inflexible schemes involved (trained codebooks, FEC...)
— Feedback information underutilized
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FlowlClodt Flexible Audio Coder: Tools

* Tools
— models of source, channel, receiver
— high-rate quantization theory
— multiple-description coding (MDC)
— Iterative source-channel decoding
— distortion measures using the sensitivity matrix
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Flowlladt Problem Statement

Goal:

— robust transmission of audio stream over
network with packet erasures

Problem:

— combating packet losses
Solution:

— robustness via redundancy
Design trade-off:

— bit-rate vs. quality
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Flowllads Forward Error Correction

« FEC can provide optimal performance, when
— entropy rate of the source < channel capacity
— no constraints on delay and complexity
— system is time-invariant
Context: separate source and channel coding
 Typical case:
— real-time constraint: finite delay, reasonable complexity
— feedback: packet-loss rate estimate available

* An alternative to FEC is needed!
Context: joint source-channel coding
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Flowlladt Problem Revisited

e Goal:

— combating packet losses

« Constraints & Requirements:
— finite (low) delay required
— reasonable complexity

— scalable in rate } oot

— scalable in redundancy

* Means to achieve the goal:
— diversity of the network
— source coding techniques
— perception: graceful decay of quality can be accepted
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Fz(%ss Notion of Multiple Descriptions (1)

Source

Central
—> a
X Encoder

Transmitter

| Side >(1)
Side ' Decoder 1 > X
Encoder 1 Cha:nnel 1—1+
' —»| Central Y
! >
I —»| Decoder X
Side '
Encoder 2 [ Chalnnel 2 _f Side S (2)
: > > X
Network Decoder 2
Recelver

« Create multiple descriptions of a single source
— each description can reconstruct the source
— the quality gradually improves with increasing number of received

descriptions.

« Exploit network diversity

— use setup that guarantees independent losses of descriptions
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Fz(%se Notion of Multiple Descriptions (2)

Trade-off between central and side distortion
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* Distortions:
— central distortion (MSE)
— side distortions (MSE)
« Constraints and channel propertles.

— fixed rate (constrained resolution) or fixed average rate (constrained
entropy) Rp = Ry + R>

— probabilities of description erasure P1and P2
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Hzelase  Notion of Multiple Descriptions (3)
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* lllustrative design problem: Receiver

— Assume symmetrical case (most relevant), i.e.
p1=p2=p Ry = Ry = R= D (R1) = D{P)(Ry) = Dg(R)
— Define total distortion (for simplicity assuming a scalar case)
Dy = (1 —p)*Do(R) + 2p(1 — p) Dg(R) 4 p°o?
— Formulate optimization problem
min D subject to R = R* given p
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HlowCladt

« Performance & properties

Comparison: MDC vs. FEC

« graceful (MDC) vs. fall-off-the-cliff (FEC) quality degradation
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* multi-level distortion distribution vs. two-level distortion distribution
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Context: joint source-channel coding
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HlowClads lllustrative Example

* Quantization-based scalar MDC [Vaishampayan93,...]
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FlorlClads Developments of FlexCode

« Scalable scalar MDC (two-channel case)
— uses predefined index assignment algorithms
— quantizers are designed analytically for CE and CR cases
— low complexity

 Lattice-based scalable scalar MDC (k-channel case)

— index assignment found by means of geometrical
construction of lattices

— analytical design for both cases (CE and CR)
— low complexity

» Rate allocation schemes obtained analytically
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FlorlClads Scalability of MDC

« Scalability of FlexCode MDC:
— Scalability of redundancy:
» optimal redundancy designed analytically (no training)

— Scalability of rate:

» quantizers designed analytically (no training, no iterative
procedures)

» NO need to store the codebooks

« Example of scalability (scalar, two-channel MDC)

— Published work:
Janusz Klejsa, Marcin Kuropatwinski, and W. Bastiaan Kleijn, “Adaptive resolution-constrained scalar

multi P le-descri ptl on codin J.," in Proceedings IEEE International Conference on Acoustics, Speech, and Signal
Processing, Mar. 2008, pp. 2945-2948.
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Flowlladt Scalar Two-Channel MDC

 Total distortion
Dyotal = (1 = p)°Do + 2(1 — p)pDs + p°o?

« Design problems:
— minimize Dtota,l subject to constrained average bit-rate (entropy, CE)
— minimize Dy, subject to constrained bit-rate (resolution, CR)
 What can be designed?
— Central and side quantizers

— Index assignment matrix (index assignment algorithm, redundancy —
related to number of diagonals V)

+ Goals:
— Analytical formulas to design the quantizers
— Analytical formulas to compute the optimal redundancy (or v )
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Flowlladt Analytical Design Method

« Optimal redundancy minimizes the total distortion
(R,v) = (1-p)*D(R,v)+2(1—p)pDg (R, v)+p°o?

+ Key point: find Do(R,v) and Dg(R,v)
 Solution:
— high-rate quantization theory

— analyzing geometry of the side quantization cell
— parameterization of index assignment algorithms

* Result:
— analytical expression for the total distortion parameterized in terms
of redundancy
 Analytical optimization of the redundancy
« Optimal scaling of the quantizers
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Flowllads Results: Flexibility
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HloalCladt Results: Scalability
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Flowlladt Outline
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HowClads Flexible Audio Coder (1)

« Source modeling and High-rate theory:
— computable codebooks

— scalable quantizers (inc. MDC) (CE, CR)
— perceptual model derived from the signal model

* AR and transform modeling converged
— KLT-based coder: transform derived from the model
— quantization in the weighted domain

« Model and transform coefficients need to be transmitted

— How to allocate the rate between model and signal?

* Published work:

W. Bastiaan Kleijn, and Alexey Ozerov, "Rate distribution between model and signal,” In IEEE Worksh. on
Apps. of Signal Processing to Audio and Acoustics (WASPAA), Mohonk, NY, Oct. 2007, pp. 243-246.
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HowClads Flexible Audio Coder (2)

* Application of MDC

— Transform coefficients
« Major part of the bit-stream
« Multi-level quality works fine with transform coefficients
— Reverse water-filling appears naturally

— Model parameters?
* Problems:
— Mismatch between encoder and decoder
— |Is a degraded quality of the model acceptable?
— May result in unreasonable complexity of the coder
— Rate spent on the model is low.
Is it worth to consider MDC there?
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FlorlClads Exemplar Scenario (1)

« Each description contains full information about the model,
k descriptions are created.

full model description for the coefficients Tst packet
full model description for the coefficients k-th packet
SN— I
S

. 20
- Disadvantages: ™

— leads to large rate overhead (for large k)

« Advantages
— Descriptions equally important (symmetrical balanced case);
— Any subset of descriptions may be used for reconstruction;
— In practice k is always low (=two)=> the rate overhead acceptable
— MDC does not introduce additional delay.
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FlorlClads Exemplar Scenario (2)

« Setup:
— a symmetrical, EC, two-channel MDC used for transform coefficients /
signal
— a model must be always received to decode the signal Side cell volume
« Rate spent for the description: /

Lyie = —E{lI0g(fx|o(X|0(X)V}

« Optimal criterion for selecting the model:
Quantized model

0 = arg max fx|o(x]0(z))
« Rate spent for the model v B /
Ly = —E{log(fe(6(X))}

 What is the optimal rate allocation between the model and the
descriptions?
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FlowlCladt Exemplar Scenario (3)

* Optimal rate for the model minimizes total rate required to transmit the
signal at certain distortion

Lx = —kE{log(fm(@(X))+log(fym(XIH(X))V)}
—— no. of T

total rate

descriptions model rate rate per description

— f(Distortion
J \

* Model selection and signal quantization decoupled by the index of

resolvability
=(X|0(X
Ly = —kBE{log(f5(&(X))+ log ;X|?§X:9EX;;
. VXI@ _
+109(fx6(XI6(X)V)} N

= V(X,O(X), (X))
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Florllads Exemplar Scenario (4)

« Optimal rate allocation for the model within mean of
the index of resolvability

— _/

*Trade-off: rate spent on the model vs. penalty on using
imperfect model

*Solvable analytically!
*Does not depend on the rate constraint!

*Does not depend on the redundancy!
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Flowlladt Exemplar Scenario - Summary

« Optimal rate for the model obtained within the index of
resolvability
— The optimal rate is constant
— Does not depend on the total rate and the redundancy
« Optimal redundancy obtained during designing MDC
— Depends on the geometry of the quantizers
— Depends on the channel (erasure probability)
— Does not depend on the rate (constraint)
« Optimal scaling of the quantizers
— Depends on the optimal redundancy and rate constraint

« Optimal rate allocation depends on the scenario.
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Flowlladt Conclusions

* FlexCode approach to MDC

— Usage of quantization-based multiple-description
schemes to facilitate scalability

— Codebooks computed on-line allow for building adaptive
coder

— Optimal rate allocation schemes can be derived for
specified scenarios

— Low-complexity (practical point of view)
— Optimality for a finite delay
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HlowCladt

»Questions”?
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orlsd MDC vs. FEC (1)

Four good reasons to use MDC (instead of FEC):
1)  graceful degradation of quality (not possible with FEC)

2) good performance with low delay (expensive in case of FEC)
delay

P . — MDC - Description 1

< redundancy > .
> —’

Time

FEC possible!
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...no degraded quality
level used!
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<

Description k

delay
3) redundancy is easily scalable (difficult to scale the redundancy in FEC)

4) MDC is a joint source-channel coding without cross-layer optimization
(FEC is used in separate source and channel coding setup)

. Finite delay, reasonable complexity!
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orlsd MDC vs. FEC (2)

Three tricky points about using MDC:

1) Strong assumptions about the channel (...also an
implementation issue)

2) Gracious-degradation of the performance vs. fall-of-the-
cliff performance

3) Delay constraints are important
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FlorlClads The Redundancy

 Allocating the redundancy
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* How to obtain the quantizers analytically?
* How to allocate optimal redundancy?
» High-rate theory!
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Hzel%se Details - Analytical Design Method (1)

 (Central distortion (CR)

p P 1 ftr'i'l £l NA e a2 T — 1 /[t’"‘i'l/r /M\\%JM\\3
PO =715 jtl JX\E) AT, V)08 = 1535 3 \\‘/tl \JX\JJ}}%W/}/}
« Central distortion (CE)
1 [t
D = _/ (@) A, v)2de
12 Jty
« Side distortion (CR)
f(©) [ e 13
Dg = = | (fx(x))3dx) |
M=<v=> \Jty ),

» Side distortion (CE) Coefficients of
Dg =ﬁ+1 fx(@)A,v)2de  quantization

]
* Result: total distortion can now be optimized analytically
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2% Details - Analytical Design Method (2)

« Design of the quantizers (for optimal v)
— central quantizer
1
A(v) = —2MX)-R Az, v) =
v

CE

wIH

1S (fx (@)

Mo (o \\%
\JX\L))> CR

— side quantizer obtained by index assignment mapping

Corollaries:

— optimal redundancy does not depend on the rate

— optimal scaling of the quantizers depends on the
redundancy
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