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Flexcode project

• European project (2006-2009)
– Partners: 

• Academia 
– KTH Royal Institute of Technology 
– RWTH Aachen University

• Industry
– Ericsson 
– Orange group
– Nokia
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Flexcode project

• Objectives of the project
– develop a practical, flexible, parameterized, generic 

speech and audio coding system with the following 
properties: 

• instantaneous adaptation to rate, quality, and robustness 
requirements; 

• usage of advanced perceptual error criteria; 
• adaptation to channel quality: packet loss rate and bit error rate; 
• embedded bit rate scalability
• reasonable computational and memory complexity. 

– demonstrate practical implementations of the proposed 
system for two relevant service applications, using 
speech and audio coding 
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Flexible geometric structures 
for coding

• Flexible 
– Definition: adaptable or variable 

• Geometric structures
– Lattices

• Coding
– Lossy compression 

• Quantization

• Indexing function

nn RCRf ∈→:
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Lattice definition

• Algebraically, an n-dimensional lattice Λ is a set of 
real vectors whose coordinates are integers in a 
given basis                .

• Geometrically, a lattice is an infinite regular array 
of points which uniformly fills the n-dimensional 
space.  
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Lattice advantages

• Parameters: scale and support region.
• There are efficient algorithms for finding nearest 

neighbors, indexing, and lossless coding lattice 
quantizers, which makes them attractive in some 
applications such as audio coding.

• Good theoretical approximations for performance 
– special case of high rate theory

• Approximately optimal if used with entropy coding: 
constant quantizer point density functions over 
finite volume regions.
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Lattice terminology

• Lattice truncation

• Lattice shell

• Lattice leader

• Leader class
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Presentation topics

• Speech and audio coding with geometric 
structures
– Bitrate domain for lattice quantizers
– Bit errors resilient indexing function
– Lattice entropy encoding (continuous bit-rate 

adaptation)
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High level overview of the coder 
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Windowing Transform 
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Flexibility?

• Lattice quantizers are not 
efficient for very low 
bitrates.

• The indexing functions for 
lattices are generally 
sensitive to bit errors.

• Existing entropy coding 
methods for lattices are 
not practical in high 
dimensions.

Lattice rotations

Bit error resilient 
indexing function

Product code based 
entropy coding
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Lattice rotations

Data has vanishing directions
The bitrate is relatively low 
– i.e. high rate theory does not apply
– lattice border effects are significant

Rotate the lattice such that the ”denser” direction 
corresponds to the “denser” direction in the data.
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Lattice rotations - Directions in a lattice (A2)
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Lattice rotations for correlated data
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Lattice rotations for correlated data
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Lattice rotation for correlated data
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Lattice rotations for correlated data
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Lattice rotations – non-correlated data
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Lattice rotations for data with vanishing
directions
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Comparison of theoretical number of bits 
needed to encode the LPC coefficients
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Lattice indexing functions

Practical indexing algorithms
Usually they require the lattice definition as 

union of leaders
union of shells 
large memory storage requirements 

The union of leaders should be large enough to include 
all codevectors that are likely to appear at the 
quantization in the infinite lattice.
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Indexing on leaders (IL)

The lattice is defined as a union of leader classes.
The lattice points are enumerated within the leader 
class they belong to.
Each leader class has an offset index.
Enumeration of the unsigned vectors followed by  
sign enumeration. 
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Indexing on shells (IS)

The lattice is defined as a union of shells (under 
the given norm).
The lattice points are enumerated within the shells 
they belong to.
Each shell has an offset index.
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IS – product code indexing

Truncations (spherical, pyramidal, rectangular) of Zn lattices 
and cosets of Zn
E.g. for a rectangular shell of Zn
– max{|xi|}=K , (x1,…,xn) lattice point
–
– Product code 

• Number of significant components
• Number of maximum valued components
• Position of maximum valued components
• Values of significant non-maximum components
• Position of significant non maximum values
• Sign of significant components

Kxnj j =≤<∃ such that  0
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IS – product code indexing –ctnd.

Example Indexing of a 3D vector having maximum norm equal to 2.

n=3, K=2
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…
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IS - applications

Index factorization – beneficial for channel error 
resilience

Demo 
Index factorization

Enables scalable indexing because only parts of the 
index can be decoded to an approximation of the 
initial codevector.
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Entropy encoding of lattice 
codevectors

Ideal case: considering each codevector 
individually

For high dimensions the number of codevectors, even 
for low bitrates, becomes too large.

Practical methods:
Group the codevectors into sets (shells, leader classes) 
and entropy encode the index of the set, while the index 
of the lattice codevector within the set is encoded using 
enumerative encoding.
Entropy encode the lattice codevector components
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Lattice entropy coding 4D
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Lattice entropy coding 8D
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Entropy encoding of lattice 
codevectors – use of product code

Product code

The idea of the product code is to extract 
different informational entities from the 
vector to be indexed and concatenate their 
respective codes.
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Product code

E.g. The information contained in the vector from a 
rectangular Zn lattice truncation is represented by 
the following entities:

The number of the significant components (S);
The number of maximum valued components (in 
absolute value) (M);
The position of the significant values (posS)
The position of the maximum valued components 
(posM);
The values of the significant non-maximum components 
(idx_nonM);
The signs of the significant components (Sg).
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Product code - Entropy coding

The different informational entities extracted from the 
vector, can be also interpreted as means of classifying 
the vectors into different sets. 
The existence of several entities implies the division of 
all the vectors into sets, sub-sets and so forth. 
If the indexes corresponding to all or part of the set 
(sub-set) types are entropy encoded, an entropy code 
can be obtained for the initial lattice vector. 
The statistics of the data from each of the sets and 
sub-sets are different and the data is coded 
accordingly.
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E.g. Bitrate calculation for rectangular truncation 
of Zn, for the norm K.

Any vector from this set can be represented on N bits.

Enumerative encoding

( )( )⎡ ⎤nKN 12log2 +=
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Product code for entropy encoding-1

The number of significant values, S, is entropy 
encoded on n1 bits
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Product code for entropy encoding-2

The number of significant values is entropy encoded on 
n1 bits; 
The number of maximum valued components, M, is 
encoded on n2 bits;
The index of positions for the maximum valued 
components is encoded on n3 bits;
The index of positions for the significant values is 
encoded on n4 bits.

( )( )⎡ ⎤MSS KnnnnN −−++++= 12log24321
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Lattice entropy coding for transform 
coefficients within an audio codec

The MDCT transform coefficients are quantized 
with lattice vector quantizers.
The coefficients are grouped in scale factor bands 
corresponding to a perceptual model.
Each band is quantized with a lattice vector 
quantizer (dimension 4, 8, 12, 16, 20, 24).
The lattice codevectors for each band are product 
code indexed and entropy coded.
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Coding of transform coefficients for audio 
signals

File BS32[%] BS48[%]

es01 70.20 53.12

es02 37.80 30.12

es03 49.20 36.62

sc01 34.80 21.75

sc02 60.20 48.75

sc03 76.60 63.87

si01 -21.80 -6.25

si02 -19.80 -0.75

si03 14.00 9.62

sm01 35.40 28.12

sm02 -0.80 -0.50

sm03 46.20 40.37

Table 2. Bit rate savings (wrt. to enumerative 
coding) when the number of significant 
values, the number of maximum valued 
components, and their position indexes are 
entropy encoded.

File BS32[%] BS48[%]

es01 6.60 4.75

es02 8.00 5.62

es03 8.80 6.00

sc01 11.20 7.00

sc02 7.20 5.25

sc03 4.80 3.62

si01 5.40 2.75

si02 9.00 7.00

si03 10.60 6.75

sm01 7.40 4.00

sm02 8.40 5.25

sm03 4.80 3.25

Table 1. Bit rate savings (wrt. 
to enumerative coding) when 
the number of significant 
values is entropy encoded.
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Coding of transform coefficients for audio 
signals

File BS32[%] BS48[%]

es01 70.20 53.12

es02 37.80 30.12

es03 49.20 36.62

sc01 34.80 21.75

sc02 60.20 48.75

sc03 76.60 63.87

si01 -21.80 -6.25

si02 -19.80 -0.75

si03 14.00 9.62

sm01 35.40 28.12

sm02 -0.80 -0.50

sm03 46.20 40.37

Table 2. Bit rate savings (wrt. to enumerative 
coding) when the number of significant 
values, the number of maximum valued 
components, and their position indexes are 
entropy encoded.

File BS32[%] BS48[%]

es01 6.60 4.75

es02 8.00 5.62

es03 8.80 6.00

sc01 11.20 7.00

sc02 7.20 5.25

sc03 4.80 3.62

si01 5.40 2.75

si02 9.00 7.00

si03 10.60 6.75

sm01 7.40 4.00

sm02 8.40 5.25

sm03 4.80 3.25

Table 1. Bit rate savings (wrt. 
to enumerative coding) when 
the number of significant 
values is entropy encoded.

30% bit rate 
reduction
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