

Speech and audio coding with flexible geometric structures?

Adriana Vasilache Flexcode Seminar Jan 10, 2008

Nokia Research Center

- Flexible
 - Definition: adaptable or variable
- Geometric structures
 - Lattices

Algebraically, an *n*-dimensional lattice Λ is a set of real vectors whose coordinates are integers in a given basis {b_i ∈ Rⁿ}_{i=1,n}.

$$\Lambda = \left\{ \mathbf{v} \in \mathbf{R}^n \mid \mathbf{v} = \sum_{i=1}^n \alpha_i \mathbf{b}_i, \alpha_i \in \mathbf{Z} \right\}$$

 Geometrically, a lattice is an infinite regular array of points which uniformly fills the *n*-dimensional space.

- Parameters: scale and support region.
- There are efficient algorithms for finding nearest neighbors, indexing, and lossless coding lattice quantizers, which makes them attractive in some applications such as audio coding.
- Good theoretical approximations for performance
 special case of high rate theory
- Approximately optimal if used with entropy coding: constant quantizer point density functions over finite volume regions.

Lattice terminology

- Speech and audio coding with geometric structures
- Toward flexibility
 - Lattice codevectors indexing
 - Indexing on leaders (GG truncation)
 - Indexing on shells (spherical, pyramidal, rectangular truncation)
 - Index factorization
 - Entropy coding
 - Entropy coding of lattice codevectors using codevectors partitioning
 - Canonical Huffman encoding of lattice codevectors

Figure 1. Block diagram of the general audio encoder

- Inflexible indexing function
- Inflexible bit-allocation

... towards flexibility

- Indexing on leaders (GG truncation)
 - Generalized indexing
- Indexing on shells (spherical, pyramidal, rectangular truncation)
 - Index factorization

- The lattice is defined as a union of leader classes.
- The lattice points are enumerated within the leader class they belong to.
- Each leader class has an offset index.
- Enumeration of the unsigned vectors followed by the sign enumeration.

- The vector $(x_1, ..., x_n)$ precedes lexicographically $(y_1, ..., y_n)$ if $\exists j$ such that $x_j < y_j$ and $\forall i < j, x_j = y_j$.
- The lexicographical enumeration can be based on:

$$\binom{n}{n_1...n_m} = \binom{n-1}{n_1-1...n_m} + ... + \binom{n-1}{n_1...n_m-1}$$

 v_i appears n_i times in the leader vector.

Binomial indexing: it counts in how many ways n1 values v1 can be put on n positions, then in how many ways n2 values can be put on n-n1 positions and so on.

$$\binom{n}{n_1...n_m} = \binom{n}{n_1}\binom{n-n_1}{n_2}...\binom{n-\sum_{i=1}^{m-1}n_i}{n_m}$$

IL - example

Index		Binom	ial		l	_exicog	graphic	
000000	3	1	0	0	0	0	1	3
000001	3	-1	0	0	0	0	1	-3
000010	-3	1	0	0	0	0	-1	3
000011	-3	-1	0	0	0	0	-1	-3
000100	3	0	1	0	0	0	3	1
001000	3	0	0	1	0	1	0	3
001100	1	3	0	0	0	1	3	0
010000	0	3	1	0	0	3	0	1
010100	0	3	0	1	0	3	1	0
011000	1	0	3	0	1	0	0	3
011100	0	1	3	0	1	0	3	0
100000	0	0	3	1	1	3	0	0
100100	1	0	0	3	3	0	0	1
101000	0	1	0	3	3	0	1	0
101100	0	0	1	3	3	1	0	0

Leader vector (3 1 0 0)

FlexCade

Index	Binomial 1			Bind	omial	2		
0	2	1	1	0	2	1	1	0
1	1	2	1	0	2	1	0	1
2	1	1	2	0	2	0	1	1
3	1	1	0	2	1	2	1	0
4	2	1	0	1	1	2	0	1
5	1	2	0	1	0	2	1	1
6	1	0	2	1	1	1	2	0
7	1	0	1	2	1	0	2	1
8	2	0	1	1	0	1	2	1
9	0	2	1	1	1	1	0	2
10	0	1	2	1	1	0	1	2
11	0	1	1	2	0	1	1	2

Precedence sequence of vectors obtained from the permutation of (2 1 1 0) using the two variants of the binomial indexing.

- Both lexicographical and binomial indexing rely on an assumed order relation between the vector component values.
- Assuming different order relations between the leader vector component values generates different indexing functions.

HerCade Generalized lexicographic indexing Connecting People

Figure 1. Generalized lexicographical indexing of the 12 codevectors belonging to the unsigned leader class (2 1 1 0). The framed index at a leaf is associated to the codevector having as entries the labels read from the root to the leaf.

E.g. the index 5 is associated to the codevector (0 1 1 2). Only leaves at the maximum depth correspond to codevectors.

FlerCade IL – generalized binomial indexing Connecting People

Figure 2. Example of graph of the generalized binomial indexing – second variant - for the vector (2 1 1 0).

Example of binomial indexing -second variant- of the vectors obtained from the permutation of (2 1 1 0).

Index

1	2	1	0
1	0	1	2
1	0	2	1
1	2	0	1
2	1	1	0
0	1	1	2
0	1	2	1
2	1	0	1
0	2	1	1
0	2	1	1

- The indexing function can be optimized with respect to a given criterion as a function of the quasi order relation at different levels in the indexing tree/graph.
- The optimization
 - Greedy algorithm (generalized lexicographical and binomial)
 - Iterative algorithm (generalized lexicographical)

- The parameterization of the indexing function allows its optimization with respect to a given criterion
- E.g.: channel distortion
 - Close to practical channel distortion lower bound for leader classes
 - Practical improvements of 10% for lattice truncations;
 limited performance by the leader class separation

- The lattice is defined as a union of shells (under the given norm).
- The lattice points are enumerated within the shells they belong to.
- Product codes type of indexes.
- Each shell has an offset index.

- Truncations (spherical, pyramidal, rectangular) of Zn lattices and cosets of Zn
- E.g. for a rectangular shell of Zn
 - max{|xi|}=K, (x1,...,xn) lattice point
 - $\exists 0 < j \le n$ such that $x_j = K$
 - Product code

FlexCode

- Number of significant components
- Number of maximum valued components
- Position of maximum valued components
- Values of significant non-maximum components
- Position of significant non maximum values
- Sign of significant components

Example Indexing of a 3D vector having maximum norm equal to 2.

- Index factorization beneficial for channel error resilience
 - <u>Demo</u>
- Index factorization
 - Enables scalable indexing because only parts of the index can be decoded to an approximation of the initial codevector.

FlarCade Entropy coding of lattice codevectors Connecting People

> EC of lattice codevectors using partitioning on

- shells
- leader classes
- > EC using canonical Huffman coding

FlerCade EC using lattice codevectors partitioning People

- The index of shell/leader class is entropy coded.
- The index of the codevector within the shell/leader class is sent on $\lceil \log_2 C_i \rceil$ bits, where *Ci* is the cardinality of the leader class/shell.

EC using canonical Huffman coding Connecting People

- Canonical Huffman
 - To increasing order of symbols probability it corresponds decreasing code lengths;
 - For the same code length the symbols have consecutive binary numbers as code words;
 - Only a table of length equal to the number of different code lengths in the code is needed.
- The symmetry of the source allows the assumption of constant probability on the shells.
- The symmetry of the source allows the assumption of constant probability with a leader class.
- The shells/leader classes can be ordered such that the codevector probability are decreasing (this is equivalent to setting the offset values for each shell/leader class).

EC of lattice codevectors

	EC on shells			EC	on leader cla	asses
lead	L _{HR}	L _{idxR}	L _R	L _{HL}	L _{idxL}	L
3	1.00	7.98	8.98	1.23	7.31	8.54
8	1.08	12.59	13.67	2.02	11.10	13.20
9	1.51	13.00	14.51	2.41	11.42	13.83
12	1.52	14.81	16.33	2.83	12.94	15.77
13	1.43	15.19	16.62	2.92	13.25	16.17
20	1.54	15.06	16.60	3.23	13.16	16.39
21	1.74	15.73	17.47	3.44	13.60	17.04

Table 1. Code length distribution between the leader class index and the position of codevectors within a class for the entropy coding with partitioning on norms (R) and on leaders (L) for Laplacian data.

lead.	Н	CHC L _H	ECR L _R	ECL L	Enum. coding
3	7.59	7.65	8.98	8.54	8
8	11.53	11.85	13.67	13.20	13
9	13.38	13.41	14.51	13.83	15
12	15.07	15.10	16.33	15.77	16
20	15.56	15.59	16.60	16.39	17
21	16.18	16.20	17.47	17.04	18

Table 2. Comparison of canonical Huffman coding (CHC) with entropy coding with partitioning of lattice codevectors on norms (ECR) and on leaders (ECL) for different sizes of a pyramidal LVQ on Laplacian data. The entropy H is also given for every considered case.

	EC on shells			EC	on leader c	lasses
lead.	L _{HR}	L _{idxR}	L _R	L _{HL}	L _{idxL}	L
3	1.01	7.94	8.95	1.03	7.88	8.92
4	1.10	11.58	12.68	1.12	11.53	12.65
7	1.31	13.37	14.68	1.69	12.96	14.65
8	1.76	14.43	16.19	1.90	14.31	16.21

Table 3. Code length distribution between the class index and the position of codevectors within a class for the entropy coding with partitioning on norms (R) and on leaders (L) for Gaussian data.

lead.	Н	CHC L _H	ECR L _R	ECL L	Enum. coding
3	7.57	7.64	8.95	8.92	8
4	11.77	11.82	12.68	12.65	12
7	14.20	14.27	14.68	14.65	15
8	15.66	15.72	16.19	16.21	16

Table 4. Comparison of canonical Huffman coding (CHC) with entropy coding with partitioning of lattice codevectors on norms (ECR) and on leaders (ECL) for different sizes of a spherical LVQ on Gaussian data. For the two latter methods the best achievable average code-length is considered. The entropy H is also given for every considered case.

EC on lattice cv. – LSF quantization Connecting People

20.00bits

- Narrow band speech coding
- 10 dimensional LSF vectors
- For a SD of 0.98dB
 - Zero order entropy 19.08bits
 - CHC length 19.11bits
 - EC on norms 19.75bits
 - EC on leaders 19.54bits
 - Enum. encoding

Speech and audio coding with flexible geometric structures!