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Flexible geometric structures

• Flexible 

– Definition: adaptable or variable 

• Geometric structures

– Lattices
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Lattice definition

• Algebraically, an n-dimensional lattice Λ is a set of 

real vectors whose coordinates are integers in a 

given basis                .

• Geometrically, a lattice is an infinite regular array 

of points which uniformly fills the n-dimensional 

space.  
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Lattice advantages

• Parameters: scale and support region.

• There are efficient algorithms for finding nearest 

neighbors, indexing, and lossless coding lattice 

quantizers, which makes them attractive in some 

applications such as audio coding.

• Good theoretical approximations for performance 

– special case of high rate theory

• Approximately optimal if used with entropy coding: 

constant quantizer point density functions over 

finite volume regions.
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Lattice terminology

• Lattice truncation

• Lattice shell

• Lattice leader

• Leader class
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Presentation topics

• Speech and audio coding with geometric 
structures

• Toward flexibility
– Lattice codevectors indexing

• Indexing on leaders (GG truncation)

• Indexing on shells (spherical, pyramidal, rectangular 
truncation)

• Index factorization

– Entropy coding
• Entropy coding of lattice codevectors using 
codevectors partitioning

• Canonical Huffman encoding of lattice codevectors
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Speech and  audio coding

Perceptual
Model

Quantization

Bitstream formatter

Coded audio bitstream

lattice based
Processing units

Spectral
data

Input
time
signal

Figure 1. Block diagram of the general audio encoder
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Spectral quantization
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SBn

s1, n1, I1

s2, n2, I2

si, ni, Ii

sn, nn, In

Scale exponent, integer, 
entropy encoded (EC)

Maximum norm of lattice 
truncation, integer, EC

Lattice codevector index

Side 
information
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Flexibility?

• Inflexible indexing function 

• Inflexible bit-allocation

… towards flexibility
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Indexing functions

• Indexing on leaders (GG truncation)

Generalized indexing

• Indexing on shells (spherical, pyramidal, 

rectangular truncation)

Index factorization



11

Indexing on leaders (IL)

• The lattice is defined as a union of leader classes.

• The lattice points are enumerated within the leader 

class they belong to.

• Each leader class has an offset index. 

• Enumeration of the unsigned vectors followed by 

the sign enumeration. 
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IL – lexicographic algorithms

• The vector (x1,…,xn) precedes lexicographically (y1,…,yn) if

• The lexicographical enumeration can be based on: 
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Binomial indexing

• Binomial indexing: it counts in how many ways n1

values v1 can be put on n positions, then in how 

many ways n2 values can be put on n-n1 positions 

and so on. 
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IL - example

0 0 1 3 3 1 0 0 101100 

0 1 0 3 3 0 1 0 101000 

1 0 0 3 3 0 0 1 100100 

0 0 3 1 1 3 0 0 100000 

03 0 1 0 3 1 0 011100 

30 0 1 0 3 0 1 011000 

0 1 3 0 1 0 3 0 010100 

1 0 3 0 0 1 3 0 010000 

0 3 1 0 0 0 3 1 001100 

3 0 1 0 1 0 0 3 001000 

1  3 0 0 0 1 0 3 000100 

-3 -1 0 0 0 0 -1 -3 000011 

3 -1 0 0 0 0 1 -3 000010 

-3 1 0 0 0 0 -1 3 000001 

31 0 0 0 0 1 3 000000 

LexicographicBinomialIndex 

Leader vector (3 1 0 0)
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Binomial indexing - example

2110211011 

2101121010 

201111209 

121011028 

120121017 

021112016 

112010215 

102110124 

012120113 

110202112 

101201211 

011201120 

Binomial 2Binomial 1Index

Precedence sequence of vectors obtained from the permutation of

(2  1  1  0) using the two variants of the binomial indexing.
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IL – generalized indexing

• Both lexicographical and binomial indexing rely on 

an assumed order relation between the vector 

component values.

• Assuming different order relations between the 

leader vector component values generates different 

indexing functions.
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Generalized lexicographic indexing

Figure 1. Generalized lexicographical indexing of the 12 codevectors belonging to the unsigned 
leader class (2 1 1 0). The framed index at a leaf is associated to the codevector having as entries 

the labels read from the root to the leaf.

E.g. the index 5 is associated to the codevector (0 1 1 2). Only leaves at the maximum depth  

correspond to codevectors.

2 21 0 1 0 2 1 0

02 1

0 0 1 0 1 0 1 1 02 1 2 2 0 2 2 1 0 2 1

1 0 1

2

1 1 2 1 0 2 0 1 2

0 1 2 3 4 5 6 7 8 9 10 11Indexes

2◄0◄1

2◄1◄0

0◄2◄1
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IL – generalized binomial indexing

Figure 2. Example of graph of the 
generalized binomial indexing –

second variant - for the vector   

(2 1 1 0).

1

22 0 2 0 0

112011

112010

101 2 9

121 0 8

2 1107

0 1126

1 0215

1 2014

2 1013 

0 1212 

2 0111 

02110 

Index 

Example of binomial indexing -second

variant- of the vectors obtained from 

the permutation of (2  1  1  0).
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IL- indexing function optimization

• The indexing function can be optimized with 

respect to a given criterion as a function of the 

quasi order relation at different levels in the 

indexing tree/graph.

• The optimization 

– Greedy algorithm (generalized lexicographical and 

binomial)

– Iterative algorithm (generalized lexicographical)
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IL - applications

• The parameterization of the indexing function allows 

its optimization with respect to a given criterion

• E.g.: channel distortion 

– Close to practical channel distortion lower bound for leader 

classes

– Practical improvements of 10% for lattice truncations; 

limited performance by the leader class separation
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Indexing on shells (IS)

• The lattice is defined as a union of shells (under 

the given norm).

• The lattice points are enumerated within the shells 

they belong to.

• Product codes type of indexes.

• Each shell has an offset index.
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IS – product code indexing

• Truncations (spherical, pyramidal, rectangular) of Zn lattices 

and cosets of Zn

• E.g. for a rectangular shell of Zn

– max{|xi|}=K , (x1,…,xn) lattice point

–

– Product code 

• Number of significant components

• Number of maximum valued components

• Position of maximum valued components

• Values of significant non-maximum components

• Position of significant non maximum values

• Sign of significant components

Kxnj j =≤<∃ such that  0
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IS – product code indexing –ctnd.

Example Indexing of a 3D vector having maximum norm equal to 2.

n=3, K=2

2 2 2 M=3

2 2 1 M=2

2 1 1 M=1

2 2 0 M=2

2 1 0 M=1

2 0 0 M=1

S=3

S=2

S=1

±2 ±2 ±2
±2 ±2 ±1 
±2 ±1 ±2 
±1 ±2 ±2
±2 ±1 ±1 
±1 ±2 ±1 
±1 ±2 ±2
±2 ±2 0
±2  0 ±2
0 ±2 ±2
±2 ±1  0

…

0,…, 7,
8,…,15,
16,…,23,
24,…,31,
32,…,39,
40,…,47,
48,…,55,
56,…,59,
60,…,63,
64,…,67,
68,…,71,

…

Vectors Indexes
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IS - applications

• Index factorization – beneficial for channel error 
resilience
– Demo

• Index factorization
– Enables scalable indexing because only parts of the 
index can be decoded to an approximation of the 
initial codevector.
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Entropy coding of lattice codevectors

EC of lattice codevectors using partitioning on

• shells

• leader classes

EC using canonical Huffman coding



26

EC using lattice codevectors partitioning

• The index of shell/leader class is entropy coded.

• The index of the codevector within the shell/leader 

class is sent on                bits, where Ci is the 

cardinality of the leader class/shell.
 iC2log
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EC using canonical Huffman coding

• Canonical Huffman 
– To increasing order of symbols probability it corresponds decreasing 

code lengths;

– For the same code length the symbols have consecutive binary 
numbers as code words;

– Only a table of length equal to the number of different code lengths 
in the code is needed.

• The symmetry of the source allows the assumption of 
constant probability on the shells.

• The symmetry of the source allows the assumption of 
constant probability with a leader class. 

• The shells/leader classes can be ordered such that the 
codevector probability are decreasing (this is equivalent to 
setting the offset values for each shell/leader class).  
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EC of lattice codevectors

Table 1. Code length distribution between the 

leader class index and the position of codevectors 

within a class for the entropy coding with 

partitioning on norms (R) and on leaders (L) for 

Laplacian data.

17.04 13.60 3.44 17.47 15.73 1.74 21 

16.39 13.16 3.23 16.60 15.06 1.54 20 

16.1713.25 2.92 16.62 15.19 1.43 13 

15.7712.94 2.83 16.33 14.81 1.52 12 

13.8311.42 2.41 14.51 13.00 1.51 9 

13.2011.10 2.02 13.67 12.59 1.08 8 

8.547.31 1.23 8.98 7.98 1.00 3 

LLLidxLLHLLRLidxRLHRlead

.

EC on leader classesEC on shells

18 17.04 17.47 16.2016.18 21 

17 16.39 16.60 15.5915.56 20 

16 15.77 16.33 15.1015.07 12 

15 13.83 14.51 13.4113.38 9 

1313.20 13.67 11.8511.53 8 

8 8.54 8.98 7.657.59 3 

Enum.   

coding 

ECL 

LL

ECR 

LR

CHC 

LH

Hlead. 

Table 2. Comparison of canonical Huffman 

coding (CHC) with entropy coding with 

partitioning of lattice codevectors on norms 

(ECR) and on leaders (ECL) for different sizes 

of a pyramidal LVQ on Laplacian data.  The 

entropy H is also given for every considered 

case.
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EC on lattice codevectors - cntd

16.21 14.31 1.90 16.19 14.43 1.76 8 

14.6512.96 1.69 14.68 13.37 1.31 7 

12.65  11.53 1.12 12.6811.58 1.10 4 

8.92  7.88 1.03 8.95 7.94 1.01 3 

LLLidxLLHLLRLidxRLHRlead. 

EC on leader classesEC on shells

Table 3. Code length distribution between the 

class index and the position of codevectors 

within a class for the entropy coding with 

partitioning on norms (R) and on leaders (L) 

for Gaussian data.

1616.21 16.19 15.72 15.66 8 

15 14.65 14.68 14.27 14.20 7 

12 12.65 12.68 11.82 11.77 4 

8 8.92 8.95 7.647.57 3 

Enum.

coding

ECL

LL

ECR

LR

CHC

LH

Hlead.

Table 4. Comparison of canonical Huffman 

coding (CHC) with entropy coding with 

partitioning of lattice codevectors on norms 

(ECR) and on leaders (ECL) for different 

sizes of a spherical LVQ on Gaussian data. 

For the two latter methods the best 

achievable average code-length is 

considered. The entropy H is also given for 

every considered case.
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EC on lattice cv. – LSF quantization

• Narrow band speech coding

• 10 dimensional LSF vectors

• For a SD of 0.98dB

– Zero order entropy 19.08bits

– CHC length 19.11bits

– EC on norms 19.75bits

– EC on leaders 19.54bits

– Enum. encoding 20.00bits
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Speech and audio coding with 

flexible geometric structures!


