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Outline

• Introduction

• Techniques:

– Rate constraint used in coder design

– Scalable model-based coding

– Scalable multiple-description coding (MDC) 

• Model-based coding architectures
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Objective

• Audio coder with following attributes:

– Good rate-distortion performance

– Scalable in rate

– Scalable in robustness to packet loss



Slide 4Kleijn 0811

Approach: Model Everything

• Statistical models of

– Source

– Channel

– Receiver

– Encoder

– Decoder

– Estimate / optimize in real time

channel

receiver

source

encoder

decoder
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Selection En/Decoder Model

• Rate-distortion theory (Shannon, 1959)

– Needs densities; bounds for simple densities only

– Variable-rate only

– No direct relation to practical systems

• Lloyd algorithm (Lloyd, 1958)

– Not a model; leads directly to quantizer

– Iterative / results in codebooks / not scalable

– Locally optimal / no need density function

• High-rate theory (Bennett, 1948)

– Assumes signal density constant in quantization cell

– Asymptotically optimal

– Fixed and variable rate

– Analytic solutions / scalable

– Provides centroid density / requires additional step
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Summary of Introduction

• To design (near-)optimal coders we need models 
of source, encoder, channel, decoder, receiver

• High-rate theory provides

– Relation distortion and rate for coder

– Analytic solution reconstruction point density
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Traditional Rate Constraints

• Fixed rate = constrained resolution
– Good for circuit-switched networks

– Variable distortion

• Variable rate = constrained entropy
– Good for packet-switched networks?

– Fixed  cell density: fixed mean distortion per cell
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Constrained-Resolution Coding

• Mean distortion of cell:

• Mean distortion:

• Constraint: 

• Solution:  
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Constrained-Entropy Coding

• Mean distortion of cell:

• Mean distortion:

• Constraint: 

• Solution:  
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Do Existing Solutions Suffice? 

• (Solutions are same for high dimensionality)

– Data density uniform in region of support

• Constrained-resolution coding:

– Distortion outliers generally dominate perceived quality

• Constrained-entropy coding:

– Rate outliers can be severe

• More outliers if data density incorrect
– Mismatch due to assumptions, inaccurate misestimation, etc.

– Backward adaptation (low delay): large mismatch at transitions

• Iterative source-channel decoding

– Exploit redundancy in quantizer; leads to mismatch of criterion
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Alternative Approach

• Constrained-entropy constrains index entropy

• Alternative: constrain exp-waited codeword length
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Variable-Constraint Coding

• Mean distortion of cell:

• Mean distortion:

• Constraint: 

• Solution:  
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Variable-Constraint Companders

high distortion and/or rate
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Summary of Rate Constraints

• Standard constraints are resolution constraint 
entropy constraint

– Distortion or rate outliers

• In many applications a compromise is better

– Satisfy both network and perception views

– Iterative source-channel decoding

– Model mismatch often important

• Variable-constraint theory facilitates compromises
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Rate Distribution

• High-rate theory leads to computable=scalable 
quantizers

• For scalable model-based coder:

How many bits for model versus how many bits 
for signal-given-model?

quantize 
signal

quantize 
model

estimate 
model
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Rate Distribution: Quantizer Design

• Select quantizer that minimizes mean codeword length

• Constrained-entropy case
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Rate Distribution
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Constrained Resolution

• Coding a sequence xk with fixed-rate allocation for sequence and 

for model: 
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A Practical Coder: AMR-WB* 

Rate, kb/s 6.6 8.85 12.65 14.25 15.85 18.25 19.85 23.05

Model 
Parameters

AR model 36 46 46 46 46 46 46 46

pitch 23 26 30 30 30 30 30 30

gains 24 24 28 28 28 28 28 28

LTP flag 0 0 4 4 4 4 4 4

VAD flag 1 1 1 1 1 1 1 1

Coefficients excitation 48 80 144 176 208 256 288 352

* AMR-WB coder uses 20 ms blocks
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Coding with Autoregressive Models

• Autoregressive models used in essentially all mobile telephones

• Interesting application of the theory

– What does the index of resolvability correspond to?

• Our model assumption is that the signal is Gaussian

– Multivariate Gaussian:

– For large k:
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I of Resolvability Autoregressive Models

• Mean index of resolvability:
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Threshold for Constr Resolution

• Mean index of resolvability:

• Second term depends on parameter distribution
– is known in literature (Paliwal-Kleijn 1995)

• Minimize rate: 

Threshold 1.25 dB = 20 bits

– Common usage is 1 dB!

• Based on “perception” 
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Rate Distribution

• Index of resolvability:

• High-rate relation to differential entropy

• Set derivative to zero: 

• Threshold  for 8 kHz sampled speech, AR model  k=160, d=8,                 
.            or                19 and 17.2 bits, corresponds to 1.29 dB

– Again disproves common belief that 1 dB threshold motivated by 
perception;  it simply leads to lowest mean squared error
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Rate Distribution: Confirmation

minima at 

340. 530. 736 bits per 20 ms block

W. Bastiaan Kleijn, “Principles of Speech Coding”, in Speech  Processing, Eds. Benesty, Huang, 
Sondhi, Springer,  pp. 283-306, 2007

W. Bastiaan Kleijn and Alexey Ozerov. ”Rate distribution between model and signal”.  Proc. IEEE 
WStockhoshop App Sign Process Audio Acoust, WASPAA, pp. 243-246, 2007
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Summary of Rate Distribution

• Cannot use trial-and-error for rate distribution 
between model and signal in adaptive coding

• New theory provides optimal distribution

– Fixed rate for model

• Theory predicts existing heuristic results

– Contrast to common belief:

Rate distribution is not governed by perceptual effects
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Objective of Scalable MDC

• Optimal coding performance under packet-loss

• Optimal redundancy under all circumstances

– Never more redundancy than needed

– No redundancy if channel is perfect

• Should work with model-based coders
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MDC Principle

• MDC = Multiple Description Coding

– Each description facilitates signal reconstruction

– Quality improves with number of received descriptions

– Trade-off between max quality and “incomplete” quality

map decode

decode

quantize

decode

decode

decode

unmap

code

code
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MDC

• A form of joint source-channel coding
– Integral part of source coder design

– Can provide optimal performance

• Alternative is forward error correction (FEC)

– MDC has “soft” failure, FEC has “hard” failure

– FEC facilitates modular design

– MDC generally inflexible

• Usage in context of model-based coding not clear
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Principle General Scalar MDC

• Design Principle: 

1. Define central and coarse side quantizers

2. Mapping from central points to K side quantizer points (K-tuples)

side cell

central cell

Redundancy factor: N=
side cell volume

central cell volume
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Scalable K-Description Scalar MDC

• Exploits reference quantizer = union of side quantizers
– Reference centroid is mean of associated K-tuples

– Find K-tuples that minimize spread of side cells

• No need for search; optimal & elegant solution

• Example: three descriptions, K=3

– Redundancy: N= central quantizer cells per side description

G. Zhang, J. Klejsa, and W. B. Kleijn, 
“Optimal Index Assignment for Multiple 
Description Scalar Quantization”, in 
preparation.
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Behavior K-Description MDC

• More descriptions for higher loss rate

• Relations are rate dependent
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Model-Based MDC

• Example: source coding with AR model

• Can we perform MDC on the model? 

NO!

• A description is a signal description

– With or without model

– How many signal descriptions carry a model description?
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Model-Based MDC

• Example scenario

• Find optimal rate distribution model and signal

quantized model 
parameters

model rate signal rate
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Summary of Scalable MDC

• MDC is a form of joint source-channel coding

– High performance

• Problem: inflexible in design

– Not commonly used; FEC more flexible

• Our methods lead to flexible MDC

– Optimal redundancy at all times

• Model-based MDC

– Generally optimal to include model with each description
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– Scalable model-based coding

– Scalable multiple-description coding (MDC) 

• Model-based coding architectures
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Coding Architecture Goal

• Vector quantization is optimal
• Search computationally complex (CR)

• Indexing complicated (CE)

• Goal: 

to make scalar quantization effective

– (Or low-dimensional VQ)

– Remove advantages of VQ

• Memory advantage

• Space-filling advantage

• (Shape advantage, CR only)
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Architecture Goal Illustration

• 3-bit/dimension constrained-resolution quantizer
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Reverse Waterfilling

• Code only where needed

frequency / eigenfunction index

spectrum 
optimal 

reconstruction

error optimal 
reconstruction

don’t spend bits here
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Architecture: Transform

• Model

• Model-based transform coder (CR case)

audio signal

ky kxinverse
DCT 

envelope=model 

iid Gaussian



audio signal

kx̂inverse
DCT 

model 

quantizer
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Architecture: AR Model

• Model

• CELP coding
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kê kx̂

z-1

a4

z-1

a3

z-1

a2

z-1

a1

iid Gaussian 

ke kx

quantizer



Slide 44Kleijn 0811

Architecture Comparison

• Unitary transform 

– Does not affect space-filling

– Reverse water filling 

– Imperfect decorrelation for fixed transform

– Model not specified

• CELP (analysis-by-synthesis AR coder)

– AR model functions well

– Inefficient space filling

– No inherent reverse water filling (requires postfilter)

– Nightmare for adaptive coding (no theory)
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FlexCode Architecture

• Model:

• Model-based transform coder

• KLT based on estimated AR model

audio signal (data)
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KLT 
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FlexCode Architecture

estimate
AR model

estimate
perception

weight KLT quantize
entropy

code

subtract
ringing

estimate
KLT

segment

entropy
code

quantize

accounts for inter-
block correlations
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FlexCode Architecture

estimate
AR model

estimate
perception

weight KLT quantize
entropy

code

subtract
ringing

estimate
KLT

segment

entropy
code

quantize

may include 
MDC

adjustable

constraint

rate

distribution
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Performance FlexCode Architecture

• Extensive MUSHRA testing

• Comparison to:

– 3GPP AMR wide-band/G.722.2

– G.729.1

– G.722.1

• Performance FlexCode scalable architecture

– Worse at 14 kb/s

– Equivalent at 24 kb/s

– Better at 32 kb/s

– KLT performs better than DCT
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Summary of Architecture

• Goal is to make scalar quantization effective

• CELP not optimal

– Poor cell shape

– No reverse waterfilling

– Requires postfilters

• Proposed architecture: adaptive transform

– Best of transforms

– Best of modeling
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Conclusions

• Network heterogeneity          adaptive coders

• Modeling everything facilitates adaptive coding

• Specific techniques

– Variable-constraint coding reduces effect outliers

– Rate-dist theory enables adaptive model-based coding

• Predicts existing results without invoking perception

– Scalable MDC extends scalable coding to environments 
with packet loss 

• Architecture sets effectiveness low-D coding

– CELP not naturally scalable

– KLT-based architecture performs best


