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FlexCode Adaptation and Coding
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FlexCode Global Goals

• In FlexCode project we want to develop a flexible 
audio coder that
– performs as good as the state-of-the-art speech and 

audio coders
– is able to run for any rate from the continuum of the 

rates
– has a computational complexity which is independent on 

the rate
– uses an advanced perceptual measure
– is able to adapt according to some feedback from the 

transmission channel 
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FlexCode AR Model

• Autoregressive (AR) model is good to model both 
speech and audio signals

• Thus, we start to develop a flexible coder based 
on the AR model

• We consider Code Excited Linear Predictive 
(CELP) coding scheme as a starting state-of-the-
art reference 
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FlexCode CELP Shortcomings

• A conventional CELP coding scheme
– is not adaptable for any particular rate (codebook (CB) 

must be re-trained for every particular rate)
– has a computational complexity growing linearly with 

CB-size (or exponentially with rate)
– does not allow the rate to be varied continuously in time
– has a fixed “optimal” CB in the excitation domain, which 

is mapped every time to the signal domain by some 
non-unitary transform

[      ]CELP : excitation 
domain

signal 
domain

non-unitary transform
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FlexCode CELP Shortcomings

• A conventional CELP coding scheme
– does not account for the so-called reverse water-filling 

effect

• In the flexible audio coding scheme that we 
propose, we overcome all the abovementioned 
shortcomings of CELP

original power 
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reconstruction 
power spectrum

distortion



SIP - Sound and Image Processing Lab, EE, KTH Stockholm 8

FlexCode Adaptive Quantization

• Since we need a coder that is able to run for any 
rate from the continuum of the rates,
– we cannot train and store the codebooks
– we need adaptive codebooks, which can be computed 

on the fly

• Probabilistic source modeling together with high-
rate theory approximation allows that
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FlexCode Two Types of Quantization

• Constrained Resolution (CR) quantization
– Fixed number of bits per vector
– R bits per vector = 2R codewords in the codebook

• Constrained Entropy (CE) quantization
– Any number of bits per vector (variable rate)
– The average rate (or the entropy of the codeword 

indices) is constrained

• CE performs better than CR, but needs a more 
flexible transmission channel
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FlexCode Single Gaussian case

• CR quantization (with companded scalar quantizers)

EVD
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FlexCode Single Gaussian case

• CE quantization (with scalar quantizers)

EVD

+-
Unif. 
SQ +

+KLT IKLT

independently for every dimension

constant step size
Entropy coder 

(arithmetic coder) bit stream
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FlexCode Single Gaussian case

• We see that with this approach
– we can quantize with any rate
– the computational complexity is independent on the 

particular rate

• We can do better using vector lattice quantizers
instead of scalar quantizers
– we can gain up to 0.25 bits per sample in rate
– which is equivalent to 1.5 dB in distortion
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FlexCode Gaussian Mixture Model (GMM) case

• With GMM the quantization consists in the 
following steps:
– For each input vector x, choose the component (state) 

maximizing the a posteriori probability p(i|x)
– Quantize using selected Gaussian component (in CR or 

CE case), as described before

• With this approach we loose in optimality, when 
the Gaussian components are not well separated
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FlexCode Signal Model

• Input signal is segmented into frames: s

• To account for within frame redundancy
– we use AR model

• To account for between frames redundancy
– we use “ringing” (or zero impulse response) subtraction
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FlexCode Signal Model

is a lower triangular Toeplitz (k x k) matrix with as first column

“ringing” AR model: LPC and excitation variance

with

then

frame to be quantized
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FlexCode Model Quantization

• AR model parameters are quantized and 
transmitted as well (forward adaptation)

• Thus we are using quantized model parameters 
rather than non-quantized
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FlexCode Encoder structure
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FlexCode Gain estimation

• This gain should be considered as a part of the model of 
perception

• Have a sense for CE case only

• More details about this coding scheme:
– A. Ozerov, and W. B. Kleijn, "Flexible quantization of audio and 

speech based on the autoregressive model," In IEEE Asilomar
Conference on Signals, Systems, and Computers, Nov. 2007.
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FlexCode Rate distribution between model and signal

• General result:
– When the signal is quantized based on some already 

quantized model and the HR assumptions are verified, 
the optimal rate for the model is constant, i.e., it is 
independent on the overall rate

– This result is true for any model and in both CR and CE 
cases

• More details about this result:
– W. B. Kleijn, and A. Ozerov, "Rate distribution between model and 

signal," In IEEE Worksh. on Apps. of Signal Processing to Audio 
and Acoustics (WASPAA'07), Mohonk, NY, Oct. 2007.
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FlexCode Rate distribution between model and signal

• This result significantly simplifies design of the 
presented coding scheme, and in particular
– first, it means that when the total rate changes, only the 

rate spent for signal quantization should be adjusted, 
and the rate for model should be kept constant,

– second, one do not need the quantizer for model (but 
not for signal) to be flexible, any quantizer can be used 
in principle.
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FlexCode
Computational complexity and storage 

requirements

• Computational complexity
– is quite low (except EVD computation)
– is independent on the rate

• Storage requirements
– are very low (only GMM model parameters used for LPC 

quantization must be stored)



SIP - Sound and Image Processing Lab, EE, KTH Stockholm 24

FlexCode Outline

• Motivation
• Basics of Adaptive Quantization under High-Rate 

Assumptions
• Flexible Audio Coding Scheme
• Experimental Illustration
• Further Work
• Conclusion



SIP - Sound and Image Processing Lab, EE, KTH Stockholm 25

FlexCode Comparison with a CELP scheme

• We compare with some CELP scheme, with a CB trained 
minimizing MSE in signal domain
– 8 kHz speech, frame length = 5 samples,
– Rate = 19.2 kbps (12 bits per frame)

– This is with scalar quantizers, and for quite low rate
– By increasing frame length up to 10 samples, we have

• 18.84 dB in CR case for the same rate, and
• 20.43 dB in CE case for the same rate

AR coder
(CR case)

AR coder
(CE case)

CELP

Variance rate (bpf) 3 2.7 5

Signal rate (bpf) 9 9.2 7

Av. SSNR (dB) 16.66 17.96 17.82
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FlexCode Reverse water-filling
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FlexCode Reverse water-filling

reconstruction 
power spectrum

distortion power 
spectrum
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FlexCode Demo

External demo
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FlexCode Back to CELP Shortcomings

• A conventional CELP coding scheme
– is not adaptable for any particular rate (codebook (CB) must be re-

trained for every particular rate)
• proposed scheme can run for any rate

– has a computational complexity growing linearly with CB-size (or 
exponentially with rate)

• proposed scheme has complexity independent in the rate
– does not allow the rate to be varied continuously in time

• proposed scheme allows the rate to be varied in time (CE quantization)
– has a fixed “optimal” CB in the excitation domain, which is mapped 

every time to the signal domain by some non-unitary transform
• in proposed scheme the CB can be constructed in any desired domain

– does not account for the so-called reverse water-filling effect
• CE quantization accounts for the reverse water-filling effect
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FlexCode Further Work

• Integration of pitch model (long term prediction)

• Integration of a model of perception

• Using vector lattice quantizers rather than scalar 
quantizers (Z-lattices)

• Addressing computational complexity issues
– EVD has a comp. complex. of order O(N3) (N = 80)

• Can we accelerate EVD computation?
• Can we replace KLT by some fixed transform (e.g. MDCT)?
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FlexCode Conclusion

• Rate
– This scheme can run for any rate from the continuum of 

the rates
– Computational complexity is independent on the rate

• Compared to CELP, the proposed scheme has 
other advantages

• Clarity, transparency and simplicity of the scheme
– Source and perception models are well separated
– No tweaking (at least at the current stage of 

development)
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FlexCode

Thank you !!!
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