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FlexCodeFlexCodeFlexCodeFlexCode Overview of the Flexcode project

• Flexible Coding for 
Heterogeneous Networks

• Objectives: develop
flexible source-channel
coding algorithms
– More flexible than current, 

application-specific coders
– Flexibility through online 

design, generic source, 
channel and distortion
models

– Focus on audio

• http://www.flexcode.eu
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FlexCodeFlexCodeFlexCodeFlexCode Flexible Source Coding

• Approach
– Start with existing models: transform and linear-

predictive coding

– "Flexcodize": analytic solutions → adaptive coding

• Tools for flexible coding include
– High-rate quantization theory
– Probability models (GMM, …) for quantizer design

• Quantizer specification by equations
• Estimate statistics for source

– Distortion measures using sensitivity matrix
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FlexCodeFlexCodeFlexCodeFlexCode
Motivations and objectives: existing

model-based techniques

• GMM (Gaussian Mixture Model) based LPC quantization 
[Subramaniam 01] [Samuelsson 01]
– LPC coefficients or prediction error are modeled by a GMM
– A mean-removed Karhunen-Loeve transform (KLT) and 

normalization by standard deviations is applied to LPC coefficients

• Autoregressive GMM for speech coding [Samuelsson 04]
– Companded GMM for vector quantizers (CGMM-VQ)

• Generalized Gaussian model for image coding [Parisot 03]
– Wavelet coding for image (EBWIC Coder)
– Wavelet coefficients are modeled by a generalized Gaussian model
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FlexCodeFlexCodeFlexCodeFlexCode Outline of presentation

• Generalized Gaussian model
– Definition
– Example

• Proposed stack-run coding with model-based deadzone
– Principle of stack-run coding
– Rate control based on asymptotic bit allocation
– Model-based optimization of deadzone
– Objective & Subjective results
– Delay & Complexity
– Audio samples

• Latest developments: model-based bit plane coding
– Principle
– Preliminary results

• Conclusion & perspectives
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FlexCodeFlexCodeFlexCodeFlexCode Generalized Gaussian pdf: definition

• The probability density function (pdf)  of 
a zero-mean generalized Gaussian
variabl e z of standard deviation σ is
given by :

where

with Γ(.) the Gamma function defined as

• The method used to estimate αααα is
proposed by Mallat [Mallat 89]

So
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FlexCodeFlexCodeFlexCodeFlexCode Estimation  example: voiced & unvoiced speech
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FlexCodeFlexCodeFlexCodeFlexCode Stack-run coding with deadzone quantization

• Input/output signals sampled at 16 kHz
• Frame length of 20 ms with a lookahead of 25 ms (5 ms for LPC analysis and 20 ms for MDCT )
• Effective bandwith: 50-7000 Hz
• The perceptual weighting filter is defined as:

• LPC coefficients quantized with a method based on GMM [Subramaniam 03] [Oger 06]

• MDCT implemented using the fast algorithm of [Duhamel 91]
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FlexCodeFlexCodeFlexCodeFlexCode Stack-run coding [Tsai&Villasenor96]

• Stack-run coding is a lossless coding method representing 
integer sequences
– Developed for wavelet image coding

• Adaptive arithmetic coding [Witten 87] using a quaternary 
alphabet (0, 1, -, +) and two contexts (one for "runs " and 
another for "stacks ")
– A run is a sequence of zeros

– A stack is a non-zero signed integer

Symbol
mapping

Contextual adaptive
arithmetic coding

Integer sequence

Context

Quaternary sequence
+,-,0,1
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FlexCodeFlexCodeFlexCodeFlexCode Stack-run coding

• Mapping rules for stack
– The binary representation is unsigned
– MSB is replaced by "+" if the coefficient is positive and "-" if it is negative.
– The absolute value is incremented by one
– The binary representation of "+4" is "+01" instead of "+00"

• The meanings of the symbol alphabet
– "0" is used to signify a bit value of 0 in encoding of stack
– "1" is used for bit value of 1 in stack, but it is not used for the MSB
– "+" is used to represent the positive MSB of stack and for a bit value of 1 in representing run lengths
– "-" is used to represent the negative MSB of stack and for a bit value of 0 in representing run lengths

• Mapping example for the sequence [0 0 0 +35 +4 0 0 0 0 0 0 0 0 0 0 -11] 
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FlexCodeFlexCodeFlexCodeFlexCode High-rate distortion approximation

• Encoding of N zero-mean independent variables x i of variances 
σσσσi

2

• In case of high-resolution the mean square error D [Gersho & 
Gray 93] is given by

where h i is a function of the pdf of the variable x i and  bi is the 
number of bits per sample used to code xi 

• For generalized Gaussian variables xi the factor hi is given by 
[Parisot 03] : 
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FlexCodeFlexCodeFlexCodeFlexCode Model-based bit allocation : principles 

• Encoding of N zero-mean variables x i of variances σσσσi
2

• The distortion D can be minimized by Lagrangian
techniques :

where B is the target bit rate
• Hence : 

• In case of high-resolution scalar uniform quantization with 
step size q
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FlexCodeFlexCodeFlexCodeFlexCode
Model-based bit allocation: 

examples at 24 and 32 kbit/s
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• Biais due to mismatch high-rate assumption and use of context-
based lossless coding instead of zero-entropy coding

A bisection search is used in order to be within the bit budget 
constraint

Number of bits using high-rate estimated step size 

Bit budget per frame
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FlexCodeFlexCodeFlexCodeFlexCode Deadzone optimization : principles [Parisot 03]

• Encoding of N zero-mean generalized Gaussian variables x i of 
variances σσσσi

2

• The distortion D is given by:

• If the reconstruction level is set to centroid the distortion D is:

• If the reconstruction level is set to mid-value the distortion D is:
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FlexCodeFlexCodeFlexCodeFlexCode Deadzone optimization : principles

• The bit rate R is given by:

• With

• So the bit rate R is given by:

2 2
m 1

R P(0) log P(0) 2 P(m) log P(m)
+∞

=
= − − ∑

( )z / 2 mq n
0,mz / 2 (m 1)q

z q
P(m) x p x dx f , ,

+

α+ −

 = = α σ σ 
∫

0,0 2 0,0 0,m 2 0,m
m 1

z z z q z q
R f , log f , 2 f , , log f , ,

+∞

=

       = − α α − α α       σ σ σ σ σ σ       
∑



France Télécom R&D 16

FlexCodeFlexCodeFlexCodeFlexCode Deadzone optimization : principles 

• Encoding of N zero-mean generalized Gaussian variables x i of 
variances σσσσi

2

• The distortion D can be minimized by Lagrangian techniques :

where αi, zi, and qi are respectively the shape parameter, the 
deadzone and the stepsize
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FlexCodeFlexCodeFlexCodeFlexCode Model-based deadzone optimization

Scalar quantizer with reconstruction 
levels set to mid-value

Scalar quantizer with reconstruction 
levels set to optimal centroid (Lloyd-
Max)
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FlexCodeFlexCodeFlexCodeFlexCode Model-based deadzone optimization
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FlexCodeFlexCodeFlexCodeFlexCodeSubjective quality results (no deadzone)

• 16 clean music samples (4 types × 4 sentence-pairs) of 8 seconds
• 24 clean speech samples in French language (6 male and female speakers × 4 

sentence-pairs) of 8 seconds
• Two AB test at 24 kbit/s : one for speech, another for music

– 8 expert listeners
– The stack-run coding (z=q) was preferred:

• In 53% cases for music
• In 48% cases for speech

• Informal listening tests at 32 kbit/s
• Stack-run coding (z=q) is better than  ITU-T G.722. 1 at 24 kbit/s and 

equivalent at 32 kbit/s
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FlexCodeFlexCodeFlexCodeFlexCode Objective results (with/without deadzone)

• 24 clean speech samples in French language (6 male and female speakers × 4 sentence-
pairs) of 8 s

• Proposed coder: predictive MDCT coder with stack-run coding 
• Results are presented with noise injection (injection similar to 3GPP AMR-WB+)
• These objective results suggest that the inclusion of a d ead-zone improves the 

performance
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FlexCodeFlexCodeFlexCodeFlexCode Subjective quality results (with deadzone)

• 20 clean speech samples in French language (5 male and female 
speakers × 4 sentence-pairs) of 8 seconds

• One AB test at 24 kbit/s for speech:
– 9 expert listeners
– Stack-run coding with z=zopt was preferred in 50% cases for speech

• Informal listening tests at 32 kbit/s
• Stack-run coding with z=z opt is better than stack-run coding 

with z=q at low bitrate and is equivalent at high bi trate. 
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FlexCodeFlexCodeFlexCodeFlexCode Delay & complexity

• Algorithmic delay:
– 45 ms (20 ms for the frame, 20ms for the MDCT and 5 ms for the 

lookahead) for the stack-run coder

– 40 ms for the ITU-T G.722.1

• The computational complexity of ITU-T G.722.1 is very low
• The computational complexity of the stack-run coder is higher 

due to the use of bisection search for bit rate matching 
– Stack-run coding is performed several times per frame 

• Storage requirements for the stack-run coder are low
– Parameters for GMM based LPC quantization
– MDCT tables (can be computed on lines)
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FlexCodeFlexCodeFlexCodeFlexCode Audio samples

Comparison between stack-run coding and ITU-T G.722.1

Stack-run coding
with z=zopt

Speech at 32 kbit/s

Speech at 24 kbit/s

Music at 32 kbit/s

Music at 24 kbit/s

ITU-T G.722.1Stack-run coding
with z=q
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FlexCodeFlexCodeFlexCodeFlexCode Latest developments: Model-based bit plane coding
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• Principle: replace stack-run coding by bit plane coding.
• Implicit rate control

Computational complexity is much more lower than stack-
run coding
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FlexCodeFlexCodeFlexCodeFlexCode Model-based estimation of symbol probabilities

• The normalized MDCT spectrum Xpre(k) is scalar quantized and we get
an integer sequence Y(k).

• This integer sequence is decomposed in binary format.
• The symbol probabilities in bit planes are estimated on the model of the 

pdf of Xpre(k)
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FlexCodeFlexCodeFlexCodeFlexCode Objective quality results

• 24 clean speech samples in French language (6 male and female speakers × 4 sentence-
pairs) of 8 s

• Proposed coder: predictive MDCT coder with bit-plane coding 
• Results are presented without noise injection 
• These objective results suggest that the speech quality o f the proposed coder with 

model-based initialization of symbol probabilities is equivalent to reference coders 
at high bitrate
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FlexCodeFlexCodeFlexCodeFlexCode Conclusion & perspectives

• We proposed a predictive MDCT coder with 
generalized Gaussian modeling for wideband 
speech and audio signals

• Generalized Gaussian modeling is used to:
– Estimate the optimal step size
– Optimize the deadzone
– Estimate symbol probabitilies in bit planes 

• Next step: Include sensitivity matrix into model-
based coder
– Linear-predictive filter → signal-adaptive transform
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FlexCodeFlexCodeFlexCodeFlexCode The End

Thank you!


