

Flexible Audio Coding Scheme Based on the Autoregressive Model

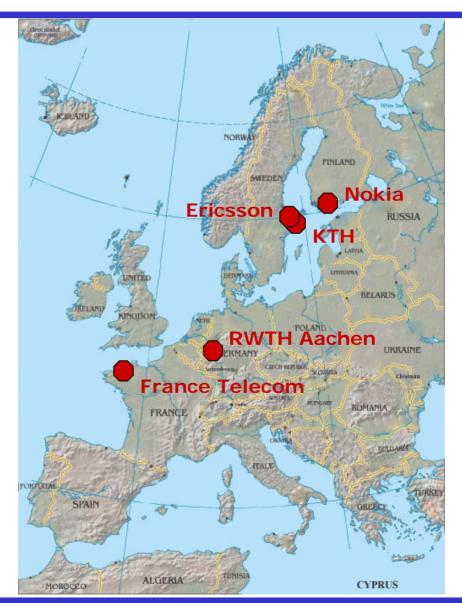
Alexey Ozerov and W. Bastiaan Kleijn

Royal Institute of Technology, Stockholm, Sweden

Seminar at IRISA September 24, 2007

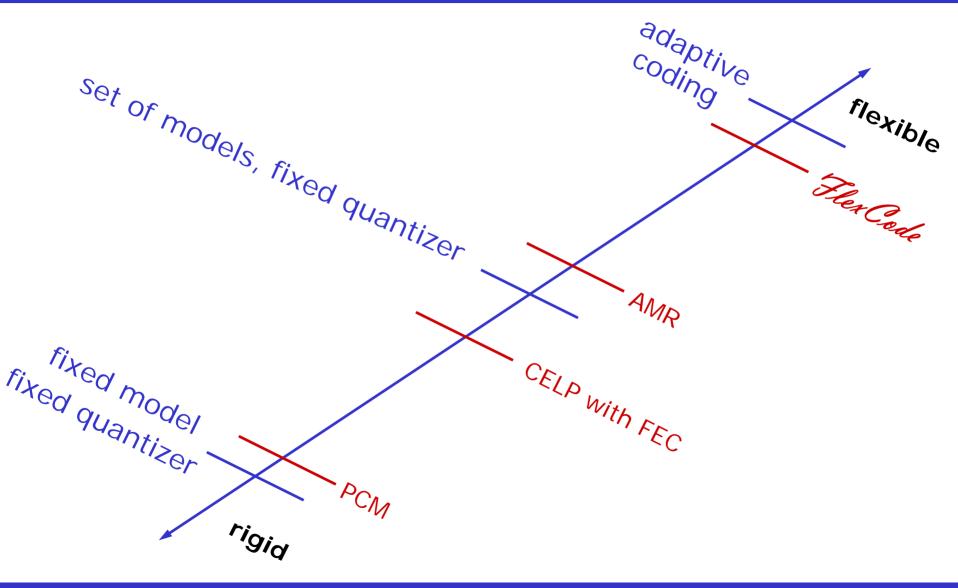
SIP - Sound and Image Processing Lab, EE, KTH Stockholm

• Flexcode in a Nutshell


 Basics of Adaptive Quantization under High-Rate Assumptions

- Flexible Coding Scheme
- Optimal Bit Allocation between Signal and Model
- Open Issues
- Conclusion

SIP - Sound and Image Processing Lab, EE, KTH Stockholm



- Heterogeneity of networks increasing
- Networks inherently variable (mobile users)
- But:
 - Coders not designed for specific environment
 - Coders inflexible (codebooks and FEC)
 - Feedback channel underutilized

Adaptation and Coding

SIP - Sound and Image Processing Lab, EE, KTH Stockholm

FlexCode

- Tools include
 - Models of source, channel, receiver
 - High-rate quantization theory
 - Multiple description coding (MDC)
 - Iterative source-channel decoding
 - Distortion measures using the sensitivity matrix

- Flexcode in a Nutshell
- Introduction
- Basics of Adaptive Quantization under High-Rate Theory Assumptions

- Flexible Coding Scheme
- Optimal Bit Allocation between Signal and Model
- Open Issues
- Conclusion

FlexCode How Can we Code an Audio Signal?

- Irrelevance
 - Parts of the signal that we cannot perceive
 - FlexCode : use advanced auditory model expressed in terms of sensitivity matrix
- Redundancy
 - Statistical dependencies that allows the information to be expressed with fewer bits
 - *FlexCode* : use a probabilistic model of the signal

- Redundancy reduction
- Conventional codebook-based approaches
 - Train a codebook for a particular rate
 - Or train a set of codebooks for a set of the rates
- In FlexCode we want
 - Coder that is able to run for any rate from the continuum of the rates
 - Computational complexity to be independent on the rate
- Thus, we cannot train codebooks, we need to compute them on the fly
- Probabilistic source modeling together with highrate theory approximation allows that

- Flexcode in a Nutshell
- Introduction
- Basics of Adaptive Quantization under High-Rate Theory Assumptions

- Flexible Coding Scheme
- Optimal Bit Allocation between Signal and Model
- Open Issues
- Conclusion

 $x^k \in \mathbb{R}^k$ source vector $f_{X^k}(x^k)$ its pdf

Distortion in a quantization cell :

$$D_{i} = \frac{1}{k} \frac{\int_{\mathbf{V}_{i}} f_{X^{k}}(x^{k}) \|x^{k} - Q(x^{k})\|^{2} dx^{k}}{\int_{\mathbf{V}_{i}} f_{X^{k}}(x^{k}) dx^{k}}$$

HR approx. $\approx \frac{1}{k} \frac{f_{X^{k}}(c_{i}^{k}) \int_{\mathbf{V}_{i}} \|x^{k} - c_{i}^{k}\|^{2} dx^{k}}{f_{X^{k}}(c_{i}^{k}) \int_{\mathbf{V}_{i}} dx^{k}} = \frac{1}{kV_{i}} \int_{\mathbf{V}_{i}} \|x^{k} - c_{i}^{k}\|^{2} dx^{k}$

- optimal for high-rate
- still work well for low-rate

- Constrained Resolution (CR) quantization
 - Fixed number of bits per vector
 - R bits per vector = 2^R codewords in the codebook
- Constrained Entropy (CE) quantization
 - Any number of bits per vector (variable rate)
 - The average rate (or the entropy of the codeword indices) is constrained

$$H(I) = -\sum_{i \in \mathcal{I}} p_I(i) \log(p_I(i)) = R$$

• CE performs better than CR, but needs a more flexible transmission channel

• CR quantization (with companded scalar quantizers)

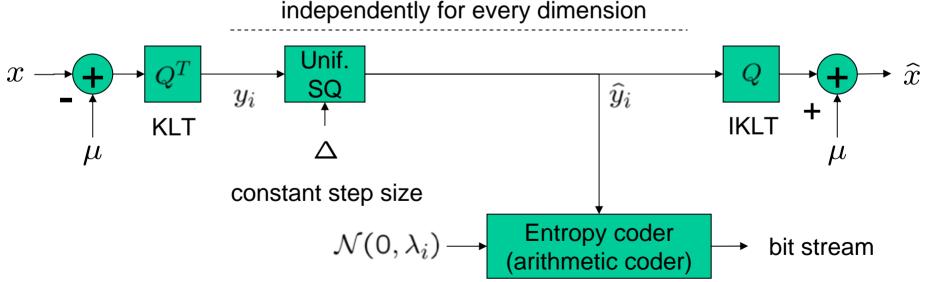
FlexCode

 $\begin{aligned} X \in \mathbb{R}^k, & X \sim \mathcal{N}(\mu, \Sigma) \\ \text{EVD} & \Sigma = Q \wedge Q^T \qquad Q^T Q = I \qquad \Lambda = \text{diag}\{\lambda_1, \lambda_2, \dots, \lambda_k\} \\ & \text{independently for every dimension} \\ x \xrightarrow{\bullet} \xrightarrow{\bullet} Q^T \xrightarrow{\bullet} Q^T \xrightarrow{\bullet} c(\cdot) \xrightarrow{\bullet} U_{\text{nif.}} \xrightarrow{\bullet} c^{-1}(\cdot) \xrightarrow{\bullet} \sqrt{\lambda_i} \xrightarrow{\bullet} Q \xrightarrow{\bullet} \xrightarrow{\bullet} \xrightarrow{\bullet} \mu \\ & \text{KLT} \qquad \text{compressor} \xrightarrow{\uparrow} expander \qquad \text{IKLT} \xrightarrow{\bullet} \mu \end{aligned}$

Single Gaussian case

number of levels

 \widehat{x}


• CE quantization (with scalar quantizers)

 $X \in \mathbb{R}^k, \qquad X \sim \mathcal{N}(\mu, \Sigma)$

FlexCode

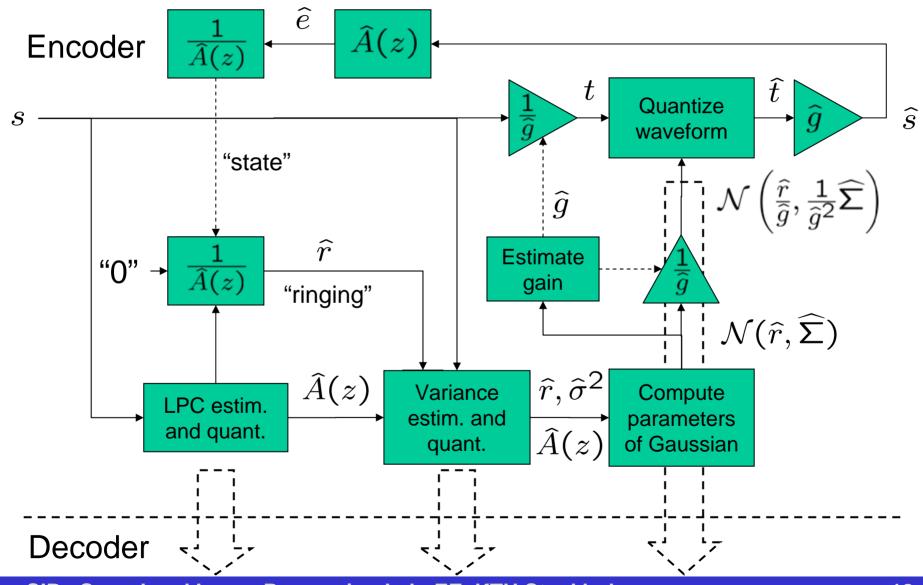
 $\mathsf{EVD} \qquad \boldsymbol{\Sigma} = \boldsymbol{Q} \wedge \boldsymbol{Q}^T \qquad \boldsymbol{Q}^T \boldsymbol{Q} = \boldsymbol{I} \qquad \boldsymbol{\Lambda}_i = \mathsf{diag}\{\boldsymbol{\lambda}_1, \boldsymbol{\lambda}_2, \dots, \boldsymbol{\lambda}_k\}$

Single Gaussian case

- We see that with this approach
 - we can quantize with any rate
 - the computational complexity is independent on the particular rate
- We can do better using vector lattice quantizers instead of scalar quantizers
 - we can gain up to 0.25 bits per sample in rate
 - which is equivalent to 1.5 dB in distortion

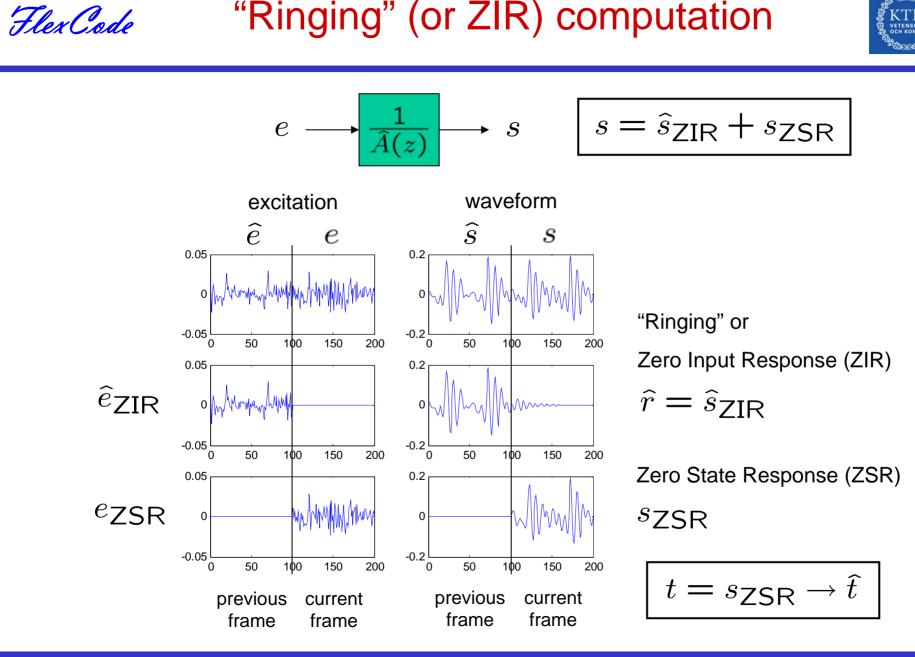
FlexCode Gaussian Mixture Model (GMM) case

- With GMM the quantization consists in the following steps:
 - For each input vector x, choose the component (state) maximizing the *a posteriori* probability *p(i|x)*
 - Quantize using selected Gaussian component (in CR or CE case), as described before
- With this approach we loose in optimality, when the Gaussian components are not well separated


- Flexcode in a Nutshell
- Introduction
- Basics of Adaptive Quantization under High-Rate Theory Assumptions

- Flexible Coding Scheme
- Optimal Bit Allocation between Signal and Model
- Open Issues
- Conclusion

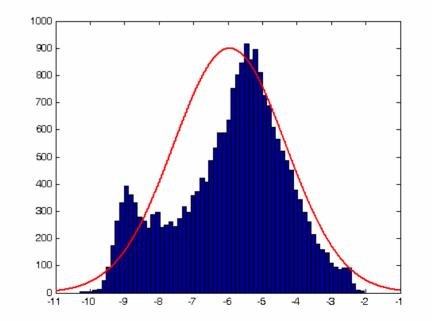
Encoder structure



SIP - Sound and Image Processing Lab, EE, KTH Stockholm

FlexCode LPC estimation and quantization

- LPCs are estimated as in AMR-WB coder
 Estimate LPC for every 5 ms frame
- LPCs are quantized in LSP domain using a GMM
- Quantized LPC are interpolated in LSF domain for every 1.25 ms subframe (as in AMR-WB coder)



SIP - Sound and Image Processing Lab, EE, KTH Stockholm

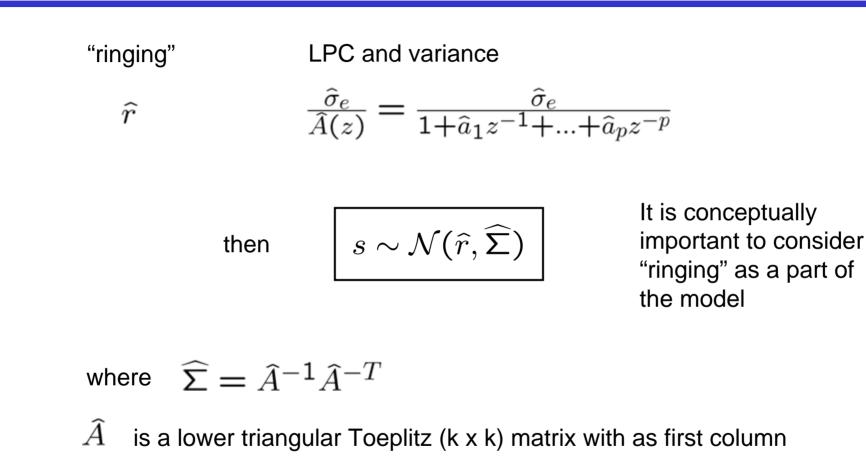
FlexCode Variance estimation and quantization

• Variance estimation – in ML sense

- Variance quantization
 - Modeled by a single
 Gaussian in log-domain
 - Quantized using this distribution

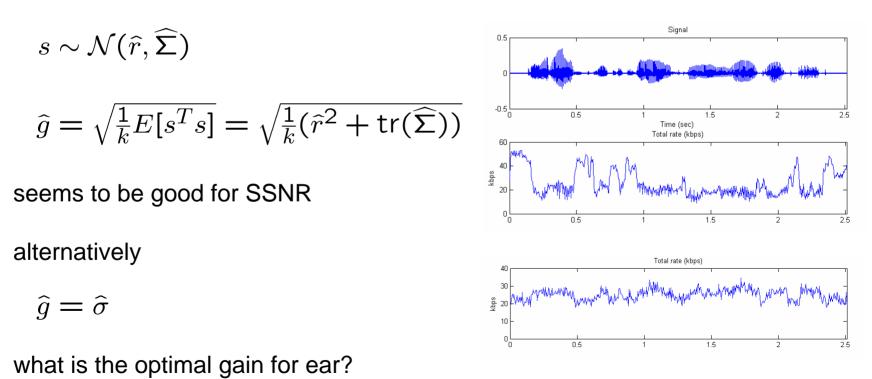
 $s - \hat{r} \longrightarrow \hat{A}(z)$

compute variance


 $\sigma^2 = \operatorname{var}(e)$

e

FlexCode Compute parameters of Gaussian

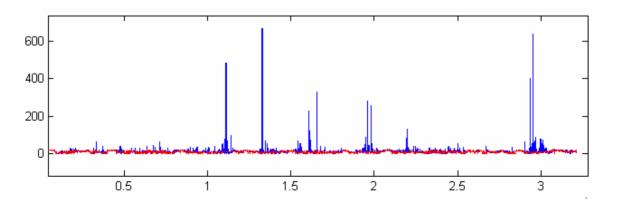


$$\widehat{\sigma}^{-1}[1, \widehat{a}_1, \widehat{a}_2, \dots, \widehat{a}_p, 0, \dots, 0]^T$$

• This gain should be considered as a part of the model of perception

• Have a sense for CE case only

FlexCode



- For low rates and short frames this system can become unstable
- The reason : closed loop between "ringing" computation and variance estimation
- More deep reason : $s \sim \mathcal{N}(\hat{r}, \widehat{\Sigma})$
 - there is no constraint for "ringing"
- That is why it is conceptually important to consider "ringing" as a part of the model

- Solution 1 : estimate variance using "ringing" computed from non-quantized signal (so the closed loop is broken)
 - Works for CR case
 - Does not work for CE case, since it gives sometimes a very small likelihood => outliers => catastrophic bursts in the rate

- Solution 2 : constraint "ringing" during signal quantization
 - Helps in CR case (in addition to solution 1)
 - Works in CE case

Idea:

$$d_1(\hat{s}, s) = \|\hat{s} - s\|^2$$

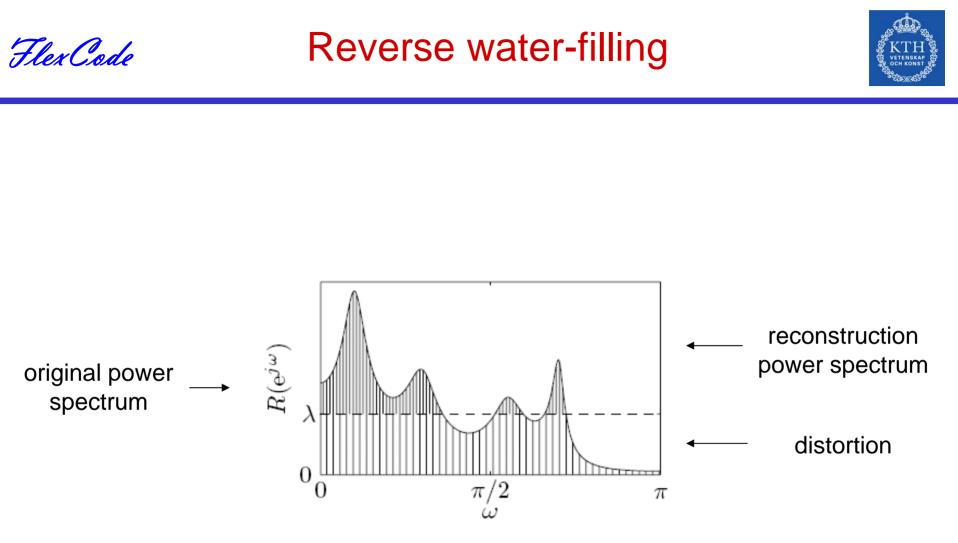
$$d_2(\hat{s}, s) = \|\hat{s} - s\|^2 + \alpha \|\hat{r}_{nxt} - r_{nxt}\|^2$$

$$d_{2}(\hat{s},s) = \|\hat{s} - s\|^{2} + \alpha \|B\hat{s} - Bs\|^{2}$$

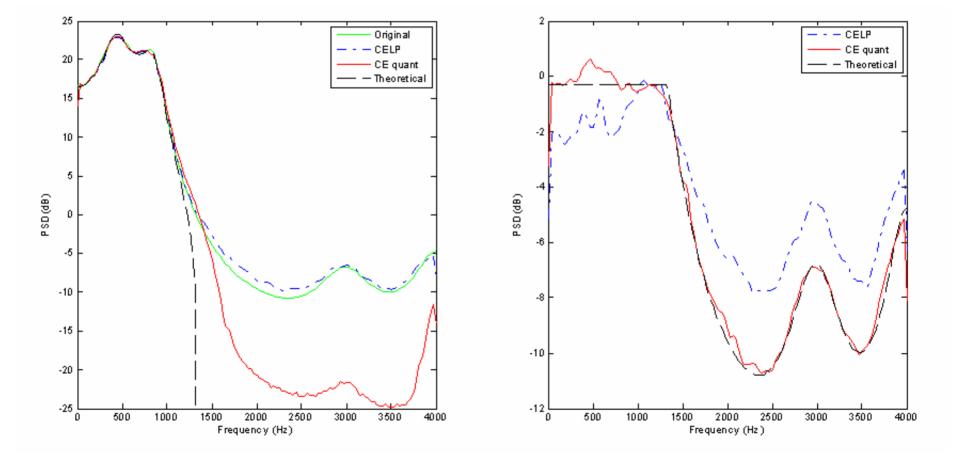
= $(\hat{s} - s)^{T}(I + \alpha^{2}B^{T}B)(\hat{s} - s)$

SIP - Sound and Image Processing Lab, EE, KTH Stockholm

- Kim and Klejn 2004
 - Common point: adaptive codebook in the speech domain
 - Differences:
 - this scheme needs the codebooks to be trained when rate changes;
 - it is based on full CB search (as in CELP), thus its computational complexity is dependent of the rate
- Samuelsson 2004
 - Common points:
 - using of model (he uses GMM);
 - computational complexity is independent of the speech rate
 - Differences:
 - this scheme needs a lot of data to train a representative GMM;
 - GMM with many states cannot be used (because of unmanageable computational complexity and scarcity of training data);
 - computational complexity is dependent of the model size (somehow can be viewed as model rate in our case);
 - we use optimal distribution of rate between signal and model


FlexCode Comparison with a CELP scheme

- We compare with a CELP (analysis by synthesis scheme) with a CB trained minimizing MSE in speech domain
 - 8 kHz speech, frame length = 5 samples,
 - Rate = 19.2 kbps (12 bits per frame)


	AR coder (CR case)	AR coder (CE case)	CELP	
Gain rate	3	2.7	5	
Speech rate	9	9.3	7	
Av. SSNR	15.8	17.85	17.54	

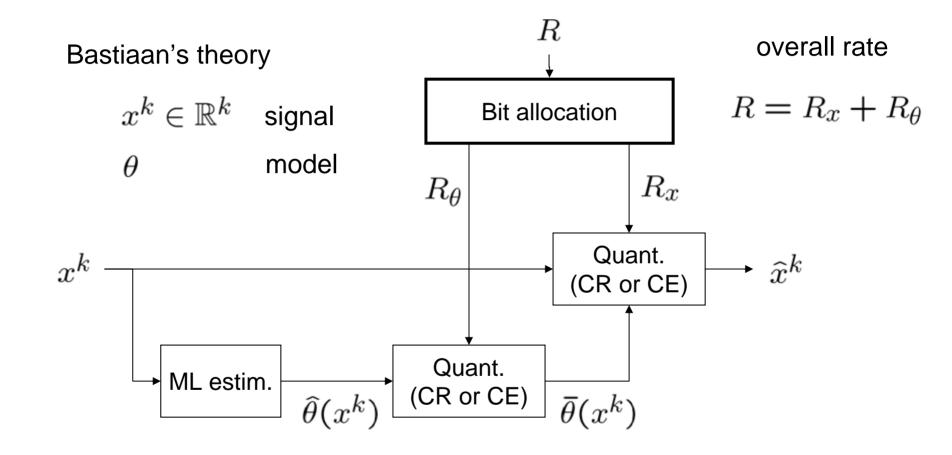
– This is with scalar quantizers, and for quite rate

Reverse water-filling

SIP - Sound and Image Processing Lab, EE, KTH Stockholm

FlexCode

- Disadvantage
 - Need a more flexible channel, since rate varies
- Advantages
 - Constant distortion is very good for perception
 - Constant distortion allows to avoid many instability problems (coder design becomes much easier than in CR case)



- Flexcode in a Nutshell
- Introduction
- Basics of Adaptive Quantization under High-Rate Theory Assumptions

- Flexible Coding Scheme
- Optimal Bit Allocation between Signal and Model
- Open Issues
- Conclusion

Optimal Bit Allocation between Signal and Model

Problem: given the overall rate R, what is the optimal bit allocation between signal and model?

SIP - Sound and Image Processing Lab, EE, KTH Stockholm

FlexCode

Optimal Bit Allocation between Signal and Model

Solution in CE case (in CR case it is analogous) Codeword length

$$\begin{split} L(x^{k}) &= L_{\bar{\Theta}}(\bar{\theta}(x^{k})) + L_{X^{k}|\bar{\Theta}}(x^{k}|\bar{\theta}(x^{k})) \\ &= -\log\left(p_{\bar{\Theta}}(\bar{\theta}(x^{k}))\right) - \log\left(p_{X^{k}|\bar{\Theta}}(x^{k}|\bar{\theta}(x^{k}))\left(\frac{D}{C}\right)^{k/2}\right) \\ &= \psi\left(\bar{\theta}(x^{k}), \hat{\theta}(x^{k}), x^{k}\right) - \log\left(p_{X^{k}|\bar{\Theta}}(x^{k}|\hat{\theta}(x^{k}))\left(\frac{D}{C}\right)^{k/2}\right) \end{split}$$

$$\psi\left(\bar{\theta}(x^k), \hat{\theta}(x^k), x^k\right) = -\log\left(p_{\bar{\Theta}}(\bar{\theta})\right) - \log\left(\frac{p_{X^k|\bar{\Theta}}(x^k|\bar{\theta})}{p_{X^k|\bar{\Theta}}(x^k|\bar{\theta})}\right)$$

index of resolvability

Optimal Bit Allocation between Signal and
Model

Solution in CE case (in CR case it is analogous)

Overall rate dependent on R_{θ} $R = \mathbb{E}\left[L(X^k)\right] = -\mathbb{E}\left[\psi\left(\overline{\theta}(X^k), \widehat{\theta}(X^k), X^k\right)\right]$ $-\mathbb{E}\left[\log\left(p_{X^{k}|\widehat{\Theta}}(X^{k}|\widehat{\theta}(X^{k}))\right)\right] - \frac{k}{2}\log\left(\frac{D}{C}\right)$ **const** indep. on rates $D = F(R, R_{\theta}) = C \exp\left\{\frac{k}{2} \left(R + \text{const} + \mathbb{E}\left[\psi\left(\bar{\theta}(X^{k}), \hat{\theta}(X^{k}), X^{k}\right)\right]\right)\right\}$ $R_{\theta}^{\mathsf{opt}} = \arg\min_{R_{\theta}} F(R, R_{\theta}) = \arg\min_{R_{\theta}} \mathbb{E}\left[\psi\left(\bar{\theta}(X^{k}), \hat{\theta}(X^{k}), X^{k}\right)\right]$

=> Under HR assumptions, the optimal rate for the model is independent on the overall rate

Optimal Bit Allocation between Signal and Model

Then these general results are applied for speech coding using AR model

We also show using some approximations that in this particular case

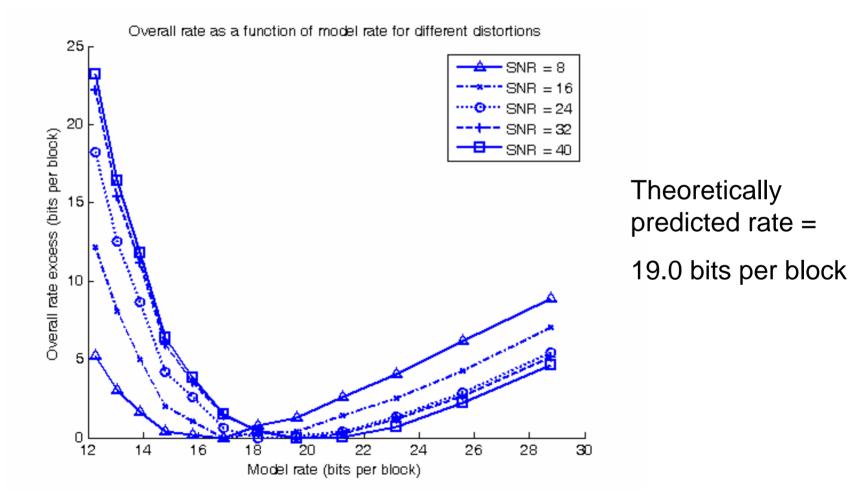
$$\mathbb{E}\left[\psi\left(\bar{\theta}(X^k), \hat{\theta}(X^k), X^k\right)\right] \approx R_{\theta} + \frac{k}{4}\mathbb{E}\left[\mathsf{SLSD}\left(\bar{\theta}(X^k), \hat{\theta}(X^k)\right)\right]$$

SLSD = Square Log Spectral Distortion

Optimal Bit Allocation between Signal FlexCode and Model

Confirmation

Table 1: Bit rates of the AMR-WB co	coder [7].
-------------------------------------	------------


Rate	6.6	8.85	12.65	14.25	15.85	18.25	19.85	23.05
AR model parameters	36	46	46	46	46	46	46	46
pitch-model parameter	23	26	30	30	30	30	30	30
excitation	48	80	144	176	208	256	288	352

Optimal Bit Allocation between Signal and Model

Experimental verification

FlexCodo

Optimal Bit Allocation between Signal and Model

Number of sentences = 10,

FlexCode

Bits for gain

Fs = 8000 Hz, Frame length = 2.5 ms (20 samples),

Total bits per frame

		20 bits	40 bits	60 bits	80 bits	100 bits
	2 bits	7.21	13.17	18.30	23.66	28.90
	3 bits	8.97	15.45	21.02	26.85	32.76
	4 bits	9.37	16.06	21.63	27.38	33.46
	5 bits	9.19	15.97	21.53	27.31	33.38
	6 bits	8.83	15.70	21.29	26.98	33.10
	7 bits	8.41	15.43	21.00	26.71	32.80

SIP - Sound and Image Processing Lab, EE, KTH Stockholm

Optimal bit allocation between signal and model

Summary

FlexCode

- General result
 - When the signal is quantized based on some already quantized model and the HR assumptions are verified, the optimal rate for the model is independent on the overall rate
 - This result is true for any model and in both CR and CE cases
- More-over, for AR model quantization it is shown that minimization of mean Square Log Spectral Distortion it is near optimal (this result is obtained theoretically without using any perceptual knowledge)

- Flexcode in a Nutshell
- Introduction
- Basics of Adaptive Quantization under High-Rate Theory Assumptions

- Flexible Coding Scheme
- Optimal Bit Allocation between Signal and Model
- Open Issues
- Conclusion

- Integration of pitch model (long term prediction)
- Model of perception
 - Which model to use?
 - Transmit the information about the model of perception or not?
- Computational complexity
 - SVD has a comp. complex. of order $O(N^3)$ (N = 80)
 - Can we replace KLT by some fixed transform (DFT, DCT, MDCT)?

- Flexcode in a Nutshell
- Introduction
- Basics of Adaptive Quantization under High-Rate Theory Assumptions

- Flexible Coding Scheme
- Optimal Bit Allocation between Signal and Model
- Open Issues
- Conclusion

- Rate
 - This scheme can run for any rate from the continuum of the rates
 - Computational complexity is independent on the rate
- CE quantization has a lot of advanteges compared to CR quantization
- Clarity and simplicity of the scheme
 - Source and perception models are well separatred
 - No tweaking (at least at the current stage of development)