

Project no: FP6-2002-IST-C 020023-2

Project title: FlexCode

Instrument: STREP

Thematic Priority: Information Society Technologies

D4.3 Report on FlexCode Hardware Demonstration

Due date of deliverable: 2009-06-30

Actual submission date: 2008-08-15

Start date of project: 2006-07-01 Duration: 36 Months

Organisation name of lead contractor for this deliverable: Nokia

 Revision: 0.4

Project co-funded by the European Commission within the Sixth Framework Programme

(2002-2006)

Dissemination Level

PU Public X

PP Restricted to other programme participants (including the Commission Services)

RE Restricted to a group specified by the consortium (including the Commission

Services)

CO Confidential, only for members of the consortium (including the Commission

Services)

FlexCode

1 SUMMARY.. 3

2 INTRODUCTION ... 3

3 CODEC INTEGRATION ... 3

3.1 FLEXCODE SOURCE AND CHANNEL CODEC .. 3

3.2 CODEC CONTROL AND ADAPTATION .. 4

3.3 IN-BAND SIGNALLING .. 5

4 DEMONSTRATION FRAMEWORK .. 5

4.1 GSTREAMER MEDIA FRAMEWORK ... 5

4.2 FLEXCODE IN THE GSTREAMER FRAMEWORK ... 6

4.2.1 Source and channel encoder .. 6

4.2.2 Transmitter ... 7

4.2.3 Source and channel decoder and channel model ... 7

4.2.4 Receiver .. 9

5 DEMONSTRATION PLATFORM ... 9

5.1 GRAPHICAL USER INTERFACE (GUI).. 9

5.2 USER INTERFACE AND APPLICATION .. 10

5.3 SOFTWARE FRAMEWORK ... 11

5.4 HARDWARE ARCHITECTURE .. 11

6 CONCLUSIONS .. 11

1 Summary
This report describes the integration of the FlexCode codec and channel model in a real-time
hardware demonstrator. The demonstrator is a voice over IP (VoIP) type of real-time application
enabling the assessment of the flexible operation of the FlexCode codec in heterogeneous
network environments with different speech and audio content. The demonstrator enables both
real-time conversation and audio streaming experiments.

The demonstration hardware consists of two laptop PCs connected to each other with fixed LAN
network, WLAN or ad-hoc WLAN configuration. The actual IP connection between FlexCode
clients is considered transparent regarding the channel conditions so that demonstrated network
conditions are totally controlled with the FlexCode channel model included in the demonstration
platform.

The demonstration was implemented using open source software modules, tools and protocols.
The PC clients have a Linux operating system while the VoIP protocol stack, data transmission
and the real-time media handling including audio capture and representation was implemented
using the GStreamer media framework. The demonstration application and graphical user
interface was built using the Maemo platform and SDK on Linux.

2 Introduction
Work package 4 (WP4) of FlexCode Project was responsible for integrating the source and
channel codec implementations originating from work packages 1 and 2 into a single real-time
demonstration environment. In addition, the FlexCode channel model was included in the
framework to demonstrate the codec operation in heterogeneous network conditions.

An open source environment was selected for the demonstration framework. The environment
consists of a Linux operation system, the Maemo platform and SDK for the demonstration
application and graphical user interface development and GStreamer for real-time media
handling, audio capture and representation, and transport protocols for VoIP clients. The
FlexCode codec including the channel model simulation was integrated as a GStreamer element
plug-in in the media framework.

This report covers first the integration of the FlexCode codec algorithms, tools and simulations
within the hardware demonstration. Integration of the FlexCode codec and channel model
interface including the adaptation and control parameters and required control data transmission
mechanisms of the demonstration are described in Section 3. The GStreamer framework applied
in the demonstration as well as the FlexCode integration into it is reviewed in Section 4. The
demonstration platform graphical user interface, software and hardware architecture are
described in Section 5. Finally, the conclusion is provided in Section 6.

3 Codec integration
Since the goal of the real-time demonstration is to demonstrate the FlexCode codec functionality
and enable codec assessment regarding the adaptation capability and flexibility, the codec
algorithm implementation needs to run in real-time on the selected platform and have extensive
user control and adaptation possibilities. Normally, a real-time conversational application or
service would hide both the adaptation and complicated operation-mode selections from the
user, but in this case, all the functionalities need to be available for the user.

3.1 FlexCode source and channel codec
The FlexCode codec consisting of a source and a channel codec as well as a channel model
was received from work packages 1 and 2 in C/C++ format. The channel coder and channel
simulation was originally created using C++, but the source coding part needed to converted to
C implementation particularly for the real-time demonstration together with WP1. The
implementation was split into separate encoding and decoding modules for the real-time

demonstration framework. Independent encoder and decoder implementations were needed
especially for the full-duplex conversational application.

3.2 Codec control and adaptation
The hardware demonstrator consists of two VoIP clients. For the demonstrator user the system
appears as local- and far-end client. For demonstration purposes, and to assess the real-time
system performance, the user needs to be able to control and change the source and channel
encoder functionality in the local- and far-end client. For example, if the user wants to evaluate
the effect of source bit rate, the encoder in the far-end client needs to be controlled with request
signalling. That is, some of the user control signals of the codec and channel model are not only
for the local client, but need to be forwarded to the other client. Therefore, the demonstration
framework needed a special control plane for handling the FlexCode codec and channel model
adaptation and control signalling.

Table 1 lists the designed user controls and signalling for the FlexCode. Naturally, the local
encoder and decoder control signalling does not require any transport of the user command
since the control affects the implementation in the local client. For example, the channel
conditions, such as packet loss rate and ES/N0, are parameters that affect only the channel
model and decoder implemented in the local client. On the other hand, some of the control
signals need to be transmitted to the far-end client. For example, the design packet-loss rate and
the design ES/N0 are parameters that affect the tuning of the source and channel encoder
locating in the far-end client.

Table 1 User control parameters and signalling.

Control parameter Value range Target Location

Coding mode I KLT/MDCT Encoder and decoder Local

Encoder bit rate (command) 12 – 64 kbit/s Encoder Local

Encoder bit rate (request) 12 – 64 kbit/s Encoder Far end

Coding mode II (command) MDC/bit-plane Encoder Local

Coding mode II (request) MDC/bit-plane Encoder Far end

Design packet loss rate 0 – 50% Encoder Far end

Actual packet loss rate 0 – 50% Channel model (decoder) Local

Design ES/N0 (request) -10 – 40 dB Encoder Far end

Actual ES/N0 -10 – 40 dB Channel model (decoder) Local

Bit-plane control 0 – 50 bits Decoder Local

The encoder bit rate command affects the source coding rate at the local client. The bit rate
request is transmitted to the far-end client and changes the bit rate the local client is receiving.
The functionality enables the user to assess the source coding performance at different bit rates.

The design packet loss rate request affects the FlexCode multiple description coding (MDC)
approach in the far-end source encoder. The purpose of this functionality is to assess the
flexibility of the codec in case the receiver is expected (or is measured) to experience various
packet loss rate conditions. The source and channel encoder may decide to change MDC
strategy based on the given loss rate. The design ES/N0 control request works similarly. Based
on the estimated channel conditions in the receiver, the far-end channel encoder may adapt the
strength or scheme-used of the forward error correction.

The actual packet loss rate and the actual ES/N0 parameters affect the local channel model.
Based on the user command the channel model simulator creates the desired channel condition.

MDC and bit-plane coding are mutually-exclusive tools in FlexCode. That is, the bit-plane coding
is available only when single description coding (SDC) is used. In practice, if the user selects bit-

plane coding, the far-end encoder and local decoder are forced to SDC mode. The bit-plane
coding enables fine granularity bit rate control. Although the bit rate reductions would normally
be done already at the far end before transmission, the simulator implementation has simplified
the approach and simulates the functionality in the receiver side. The perceived effect is
naturally the same.

Being able to set both design and actual channel error condition parameters in the simulation,
the user may assess the FlexCode codec performance in case the adaptation of the channel
and source coding is aligned with the prevailing channel conditions and when there is a possible
mismatch in the codec functionality.

All the parameters listed in Table 1 can be tuned during the simulation even in every frame.
Hence, the user has a good possibility to assess the codec performance. The only exception is
the selection between the KLT and MDCT coding models. Due to the different approach in the
source coding, this functionality cannot be changed during a simulation but needs to be selected
in the beginning.

3.3 In-band signalling
The user control signals, as described above in Table 1, can be classified into two categories: 1)
local codec and 2) far-end codec control parameters. The codec implementation has an
application interface for both category signals, but, as discussed above, for far end control
parameters a special control plane was needed as well. FlexCode demonstration was designed
to carry the control signalling within the codec bit stream as in-band signalling.

In-band signalling approach is straightforward and flexible to implement. Signalling is obviously
very fast and always synchronised with the actual media since it is carried within the data frames
together with the coded bits. The design assumption of the demonstration was that the simulated
control plane signalling was well protected, and hence, error free. Therefore, the control
parameters carried within the data frames were not affected by the simulated channel
conditions.

4 Demonstration framework
Media handling, as well as media and data transport between FlexCode demonstration clients,
was realised with the open source GStreamer framework also available as an open source
project in http://gstreamer.freedesktop.org. The advantage of GStreamer is the modular
structure and readily available elements for real-time data transport and tools for audiovisual
media capture and representation. The demo specific algorithms and tools, such as audio and
channel coding and media rendering can be easily integrated within the framework.

4.1 GStreamer media framework
Figure 1 presents the basic media handling in modular architecture of the GStreamer platform. A
basic media streaming or playback is realised with a pipeline consisting of a source element, a
filter element, and a sink element. A source element can be, e.g., an audio file on a hard disk. In
a conversational application like the FlexCode demonstration, the source element provides real-
time audio capture with the selected sampling rate and data format. The filter element may
consist of an encoder, a decoder or any other filtering functionality. Finally, the sink element can
be an audio device that plays back the processed audio content or a file to store the processed
media.

Source element

Source

Filter element

SourceSink

Sink element

Sink

Figure 1 Basic GStreamer media handling framework consisting of modular elements.

http://gstreamer.freedesktop.org/

The GStreamer elements also facilitate a data and a status transport between the pipeline and
the application managing the pipeline. Pipeline status, such as the end of the streamed media
file could be conveyed to the application level using the GStreamer Bus. In addition, the
elements may have input and output arguments containing control and adaptation data. This
feature can be applied in the application design for user control signalling.

4.2 FlexCode in the GStreamer framework
The FlexCode source and channel codec including the channel model was implemented as a
GStreamer plug-in element. Due to the full-duplex application needs, the plug-in was split into
independent encoder and decoder elements. The channel model was integrated into the
decoder element together with the channel decoder.

The FlexCode plug-in was designed as a wrapper around the FlexCode implementation creating
the sink and source interfaces towards GStreamer framework and application level user control.
The element itself utilizes the interfaces provided by the FlexCode source and channel coding
algorithms, tools and channel model implementation.

4.2.1 Source and channel encoder

Figure 2 presents the overview of the FlexCode encoder element consisting of source and
channel encoding algoritms and in-band data transmission. The input to the element is 16 kHz
mono audio signal in 16 bit linear format. The output consists of coded bits of the source and
channel encoder and in-band signalling for controlling the far-end client.

The application level control parameters form two categories. As presented in Table 1 in Section
3.2, some of the parameters are for the local encoder, while other commands need to be
transmitted to the far-end client.

FlexCode

source and

channel

encoder

SourceSink

Application level

local encoder

control

Source

encoder

Channel

encoder

input

Application level

far end encoder

control

In-band

data

Figure 2 FlexCode encoder element with application level control for local and remote
source and channel encoder.

The GStreamer encoder implementation has several input arguments. The interface details on
the input arguments are presented in Table 2. The encoder plug-in is called “fcc-enc” in the
GStreamer framework.

Table 2 FlexCode encoder “fcc-enc” interface to GStreamer.

Control parameter Value range Notes Default

Coding 0, 1 Coding mode
0=KLT, 1=MDCT

0

Mode 12 - 64 Local encoder bit rate 24

Request 12 - 64 Far end encoder bit rate 24

Dploss 0 – 0.5 Local design packet loss rate 0.01

Dplreq 0 – 0.5 Far-end design packet loss rate 0.01

Mdcbtcod 0, 1 Selected coding
0=MDC, 1=bit-plane

0

Mdcbtreq 0, 1 Requested coding
0=MDC, 1=bit-plane

0

The FlexCode encoder plug-in can be operated as “stand-alone” encoder within the GStreamer
framework as follows:

> gst-launch filesrc location=input_mono_16kHz.wav ! wavparse ! fcc-enc

coding=0 mode=12 dploss=0.01 ! filesink location=fcc_encoded_binary.bin

In this example, the input arguments to the “fcc-enc” encoder set the encoding rate to12 kbit/s
using the KLT mode. The encoder adapts the MDC encoding based on the design frame error
rate of 1%.

4.2.2 Transmitter

The media handling and transport on a transmitting PC client side is presented in Figure 3. The
speech or audio is captured with a standard ALSA audio device after which the content is
encoded with the FlexCode source and channel encoder. The resulting bit stream is written to
the TCP or UDP port and transmitted over an IP network to the receiver. The application only
needs to know the IP address and port number of the receiving client.

ALSA Source

Source

FlexCode source and

channel encoder

SourceSink

TCP/UDP Sink

Sink

Mono

16 kHz

sampling

Application level

encoder and

channel control

Coded bits

+

inband data

Audio

device
Network

interface

Far end client IP

address and

port number

Figure 3 Encoding and transmission of 16 kHz mono signal with FlexCode source and
channel encoder within GStreamer framework.

4.2.3 Source and channel decoder and channel model

Figure 4 presents an overview of the FlexCode decoder element in the GStreamer framework
consisting of source and channel decoding tools, channel model simulation, and in-band data
receiver. The FlexCode channel model simulation was integrated into the decoder element to
balance the overall complexity and to simplify the demonstrator architecture. The input to the
element is the coded bit stream from the FlexCode source and channel encoder. In addition, the
data stream contains in-band signalling. The control parameters in the in-band signalling need to
be extracted from the stream and forwarded as output arguments of the plug-in element for the

application. The remaining coded bits are then forwarded through the channel model simulation
in which bit errors as well as packet errors are inserted based on the given channel conditions.
The coded bits are then decoded with the FlexCode channel and source decoder. The output of
the elements is 16 kHz mono audio signal in 16 bit linear format.

FlexCode

source and

channel

decoder

SourceSink

Application level

encoder control

from far end

Channel

decoder

Source

decoder

In-band

data

Channel

model

Application level channel

model and decoder

control

Figure 4 FlexCode decoder element with application level control from far-end for the
encoder in the local client.

The GStreamer decoder implementation has several input arguments. The main difference to
encoder interface is that the decoder also has output arguments retrieved from the in-band data.
The interface details are presented in Table 3. The decoder plug-in is called “fcc-dec” in the
GStreamer framework.

Table 3 FlexCode decoder “fcc-dec” interface to GStreamer.

Control parameter Value range Notes Default

Coding 0, 1 Input: Coding mode
0=KLT, 1=MDCT

0

Request 12 – 64 Output: Local encoder bit rate 24

Aploss 0 – 0.5 Input: Actual packet loss rate 0.01

Rploss 0 – 0.5 Output:
Requested design packet loss rate

0.01

Desno -10 – 40 Input: Design ES/N0 30

Aesno -10 – 40 Input: Actual ES/N0 30

Mdcbtreq 0, 1 Output: Requested coding
0=MDC, 1=bit-plane

0

Decbitrate 0-50 Input:
Removed number of bits in decoder

0

The FlexCode encoder plug-in can be operated as a “stand-alone” decoder within the
GStreamer framework as follows:

> gst-launch filesrc location= fcc_encoded_binary.bin ! fcc-dec

coding=0 desno=10 aesno=30 aploss=0.02 ! wavenc ! filesink

location=fcc_decode_wav.wav

In this example, the input arguments to “fcc-dec” decoder select the KLT mode and set the
actual frame error rate of the channel to 2%, the channel simulation is set to ES/N0 = 30 dB
while the channel decoder is set to handle channel conditions of ES/N0 = 10 dB.

4.2.4 Receiver

Media handling on the receiver side is just the opposite from the transmitter implementation. The
GStreamer pipeline consisting of the FlexCode decoding element reads the TCP or UDP port
and receives the coded bit stream and in-band data from the transmitting client. The FlexCode
plug-in element extracts the in-band data and provides the control information for the application.
For example, the application reads the encoder bit rate requests and forwards them to the
encoding element running in the same client. The channel simulation and decoding pipeline is
presented in Figure 5. The local decoder control is handled as input arguments to the element.
For example, the channel conditions are controlled with these arguments.

ALSA Sink

Sink

FlexCode source and

channel decoder +

channel model

SinkSource

TCP/UDP

Source

Source

Mono

16 kHz

sampling

Application level

channel model and

decoder control

Coded bits

+

in-band data

Audio

device

Network

interface

Application level

encoder control

Figure 5 Channel simulation and decoding of 16 kHz mono signal with FlexCode source
and channel decoder within GStreamer.

5 Demonstration platform
The generic FlexCode demonstration platform consists of two VoIP clients equipped with a
network connection, a microphone for audio capture and a headset for audio representation. The
IP data transmission between the clients is arranged with either Ethernet cable or WLAN.

Each VoIP client is running both the encoder and the decoder simulation simultaneously. Hence,
the GStreamer pipelines presented in Figure 3 and Figure 5 are operated by the demonstration
application. The main task of the application is to handle the graphical user interface, take care
of the control signals and manage the GStreamer pipeline operation. In addition, the in-band
messages between encoding and decoding pipelines are synchronised.

5.1 Graphical user interface (GUI)
The main control parameters of the FlexCode demonstrator were implemented on the graphical
user interface as sliders. They enable easy modification of the codec bit rate, coding mode,
channel coding properties and transmission channel conditions. The message window provides
information about the ongoing VoIP session, IP address and port number as well as the selected
codec state such as bit rate and design channel conditions.

The far-end client IP address and port number details as well as the start and close of the
application are provided as input to the demonstration with drop down menus of the GUI.

Design Packet loss

0 0.5

Actual Packet loss

0 0.5

Design ES/N0

-10 40

Actual ES/N0

-10 40

Encoder bit rate

12 64

Decoder bit rate

0 50

Message window

MDC Bit-plane

0.02

0.2

30

30

34

10

Figure 6 Graphical user interface of the FlexCode demonstrator.

5.2 User interface and application
The FlexCode demonstration application behind the graphical interface maps the control signals
to the GStreamer pipelines. Table 4 lists the control parameters and corresponding FlexCode
GStreamer plug-in implementation input argument. It should be noted that the selection between
KLT and MDCT coding is not available in the GUI. Since switching between different coding
modes is not possible during the simulation, the KLT/MDCT mode needs to be selected before
starting the application. Therefore, separate applications were built to handle KLT and MDCT
coding modes.

Table 4 Mapping of GUI parameters to FlexCode encoder and decoder implementation.

GUI parameter Encoder
“fcc-enc”

Decoder
“fcc-dec”

Control target

Design packet loss Rploss - Far-end encoder

Actual packet loss - Aploss Local decoder

Design ES/N - Desno Local channel decoder

Actual ES/N0 - Aesno Local channel simulation

Encoder bit rate Request - Far-end encoder

Decoder bit rate - decbitrate Local decoder

MDC / Bit-plane Mdcbtreq - Far-end encoder

Table 4 clearly shows that all the GUI parameters intended for the encoder actually control the
encoder in the far-end client using in-band data transport, while the decoder and channel control
changes the local decoder and channel simulation operation. As discussed earlier, the
application ensures that the encoder control requests are retrieved from the received bit stream
and forwarded to the encoder.

5.3 Software framework
The FlexCode demonstrator is built on a Linux based Maemo platform. The advantage is the
availability of open source tools and compatibility between Linux PCs and, e.g., Nokia
N800/N810 internet tablets. Hence, the demonstration platform can easily be extended to mobile
devices. The same code base can be used on both architectures without any modifications. A
streaming type demonstrator can be realised using the mobile device as a receiving client.
However, for complexity reasons, the VoIP demonstration is only available for a PC
implementation.

The development platform and SDK used for the creation of the demonstration platform is
available in http://maemo.org/development. Maemo 4.1.2 Diablo was applied to create the
graphical user interface, data transport and audio media handling.

5.4 Hardware architecture
The FlexCode demonstration platform consists of two PC clients connected to each other over a
fixed network, a WLAN, using ad-hoc networking over WLAN as presented in Figure 7. This
architecture can be applied for real-time conversation (VoIP) as well as an audio streaming type
of demonstration. In a typical conversational demo setup, the audio is captured with external or
PC laptop mounted microphones. The audio is processed and coded within the PCs using the
GStreamer media frame implementation. Since the demonstration platform does not have any
echo control, the audio presentation needs to be made with a headset to avoid audio signal
leakage pack to microphone.

Transport over ad-hoc

WLAN network

Audio rendering

Audio rendering

Audio capture

Audio capture

PC running

FlexCode

PC running

FlexCode

Figure 7 FlexCode hardware demonstration architecture.

6 Conclusions
This report provided a detailed description of the integration of the FlexCode source and channel
codec into the hardware demonstration. The demonstration platform enables the user to assess
the FlexCode codec approach in real-time conversational (VoIP) application under
heterogeneous channel conditions and with various audio content. The report explains how the
codec flexibility and functionality can be demonstrated in a convenient manner by controlling the
main features of the FlexCode encoder, decoder and channel model simulation with the
graphical user interface.

http://maemo.org/development.%20Maemo%204.1.2

The technology selection for the demonstration using open source Linux operating system with
Maemo platform and SDK was explained. The real-time media handling and data transport
protocols with GStreamer framework and integration of FlexCode were reviewed in detail.

