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Chapter 1

Overview

1.1 Introduction

The main objective of the FlexCode project is to develop generic coding technologies that can adapt to

the situation at hand instantaneously. The methods avoid application-specific solutions and provide a

coding efficiency that is similar to current state-of-the-art algorithms. The technologies address a rapidly

increasing diversity of services and an increasingly heterogeneous telecommunications network.

It is useful to briefly review the organizational structure and technical approach of the FlexCode project to

provide a context for this report. The algorithm development work of FlexCode is separated into source

coding and channel coding. Work package 1 (WP1) deals with source coding and WP2 with channel

coding. WP2 has as objective to develop a generic channel model (described in [Fle07a]) as well as a

generic channel coder which will adapt to the source encoder for optimal combined/joint source-channel

coding as well as to the different channel types. The specific objectives of WP2 are

• to develop a new generic binary input soft output channel model;

• to develop a flexible channel encoder and a corresponding powerful and efficient channel decoder;

• to create a practical implementation.

This report is deliverable D2.3, which is to describe the final implementation of the FlexCode channel

coder. In addition, it describes the main specific source-channel coding techniques developed under

WP2. Not all of the new techniques are actually used in the implemented channel coder. Some simply

provide insight and some turned out not to be applicable for different reasons.

In this chapter we first provide an outline of the FlexCode channel coding approach. We then give an

overview of the remaining chapters of this report.

1.2 Channel Coding in FlexCode

The FlexCode concept of flexible source coding poses interesting challenges for channel coding and

transmission. At a first glance, the variety of different FlexCode scenarios defined in [Fle07b] seems

to require not only a single, but several distinct channel coders for the different scenarios, transmis-

sion schemes and storage media. For instance, in storage scenarios, channel coding is not necessary,

but a strong compression of the data is required. To accomplish a flexible, near-entropy compression,

arithmetic codes [BCW90], [BCK07] are frequently used. However, already a single bit error in the

arithmetically coded bit stream causes a complete decoder failure and the loss of large parts of the origi-

nal data. This means that in wireless transmission scenarios, strong channel coding has to be employed
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in order to guarantee error-free transmission. For this reason, in most of the current speech and audio

codecs the redundancy in the audio signal is removed using techniques like linear prediction and/or vec-

tor quantization [VM06]. The concept of constrained entropy quantization, which is a candidate to be

used in the FlexCode source coder, leaves a large amount of redundancy in the quantized signal. This

residual redundancy is then usually removed using standard data compression algorithms such as arith-

metic coding. Instead of removing this redundancy, the source encoder can leave the redundancy in the

bit stream and use it at the receiver to help combat any effects introduced by channel noise. It has been

shown that it is possible to efficiently exploit this residual redundancy of the parameters in an iterative

Turbo-like process at the receiver [AVS01]. Furthermore, the best practical channel coders known so far

utilize iterative decoders [RU08]. Therefore, channel codes with iterative receivers have been chosen as

a candidate for the FlexCode source coder.

On the other hand, if a fixed bit rate is required on the transmission link, constrained resolution quan-

tization is employed by the source coder. In this case, uniform quantizers with a limited number of

quantization levels are utilized [Fle08a], [Fle08b]. This scheme is perfectly suited for the application

of Iterative Source-Channel Decoding (ISCD) and therefore, an iterative receiver has been developed

during the project.

1.2.1 Architecture

As already outlined during the development of the baseline channel coder [Fle08c], a twofold channel

coding scheme is used for the FlexCode channel coder. The interface between source and channel coding

is not on the bit stream level but immediately after quantization, i.e., the channel coder receives the

quantizer indices and side information on the quantization (e.g., type of quantization used, assumed

probability density function of the signal, number of quantization levels) and is responsible for generating

a bit stream itself. The model parameters are encoded separately by a strong conventional channel

code and the transform coefficient are encoded using a joint source-channel coding approach which

allows iterative source-channel decoding at the receiver. This twofold scheme is necessary as in order to

decode the transform coefficients, the information extracted by the model parameters is required. This

was already outlined in [Fle08c]. Therefore a strong interaction between source and channel coding is

required at the receiver, where the decoding is performed in several steps:

1. channel decoding of the model parameters;

2. extraction of spectral envelope and transform information from the decoded model parameters;

3. using this information to perform channel decode and, if needed, entropy decoding of the transform

coefficients;

4. reconstruct the audio signal using the transform coefficients by performing the inverse transform.

Due to this strong interaction between source and channel coding, both WP1 and WP2 had to work

closely together during the development of the source and channel coder.

1.3 Report Overview

In Deliverable D-2.2 [Fle08c], the FlexCode baseline channel coder has been introduced. Furthermore,

the basics of modern iterative channel coding techniques such as Turbo codes as well as the EXIT chart

analysis tools and basic concepts of interleaver design have been introduced. The concept of soft decision

source decoding (SDSD) has been depicted and extended for the deployment in iterative Turbo-like

decoders leading to Iterative Source-Channel Decoding (ISCD). First advances and optimizations of the
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iterative source-channel decoding scheme that were made during the FlexCode project in order to achieve

a more flexible transmission scheme have been presented. Finally the adaptation of the ISCD scheme to

the FlexCode source coding concept was given along with a brief outline of how to practically realize

the channel encoder and the interface between source and channel coder in FlexCode.

In this report, we first describe the channel coder in detail in Chapter 2. The remaining chapters describe

the main source-channel coding technologies developed within the FlexCode project since Deliverable

D2.2 [Fle08c]. In Chapter 3 we present several optimizations dealing with the complexity of the iterative

source-channel decoder. These optimizations aim at the reduction of computational complexity mainly

at the receiver, however some of them also required modifications of the transmitter. In Chapter 4 the

concept of irregular index assignments, already introduced in Deliverable D2.2 [Fle08c], is extended and

it is shown how unequal error protection can be easily realized by utilizing irregular index assignments.

Furthermore it is shown how the FlexCode channel coder can be used as an error-resilient entropy coding

scheme by a simple modification of the optimization problem.
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Chapter 2

The Final FlexCode Channel Coder

2.1 General Channel Coder Description

The channel coding concept has to be adapted to the basic structure of the source encoder. The baseline

FlexCode source coding concept is described for instance in [BGK+08] and [Fle08a]. For each frame,

the source encoder provides a set of parameters which can be grouped into two main parts: model

parameters and transform coefficients. The model parameters include for example the LP coefficients

and gain factors. Using the model parameters the source encoder determines the quantizer setup for the

transform coefficients with the possibility to select between two different quantization modes:

• In the case of constrained resolution (CR) quantization, resulting in a bit stream of fixed rate,

the source encoder determines the bit allocation of the transform coefficients, i.e., the number of

quantization levels to be used for the considered parameter.

• In the case of constrained entropy (CE) quantization, resulting in a bit stream of variable rate, the

source encoder uses the model parameters to determine the distribution of the transform coeffi-

cients and the step size of the uniform quantizer. Using this information, an entropy coder (for

example an arithmetic coder) can efficiently generate a compressed bit stream.

As a result of this source coding concept, it has been found that it is not feasible to perform joint source-

channel decoding of the model parameters and the transform coefficients. The source-channel decoder

requires knowledge about the model in order to determine the encoding parameters of the transform

coefficients like bit allocation and step sizes. Therefore, we have proposed to utilize a separate transmis-

sion of the model parameters and the transform coefficients in [Fle08c]. The resulting split transmission

structure which defines the FlexCode baseline channel coder is depicted in Fig. 2.1.

The FlexCode source encoder outputs model parameters and transform coefficients which are indepen-

dently coded in two branches. In order to encode the transform coefficients, side information resulting

from the model parameters is required. This side information can be for instance probability density

function approximations of the different transform coefficients or quantizer reproduction levels used

during quantization. After separately encoding both model parameters and transform coefficients, the

resulting bit streams are multiplexed to form a single packet and then transmitted over the FlexCode

channel model [Fle07a]. At the receiver, this bit stream is demultiplexed and then first the model pa-

rameters are channel decoded. Additionally a Bad Frame Indicator (BFI) is computed by means of error

detection. Such a BFI can be used for instance at the source decoder to perform frame erasure conceal-

ment. Using the model parameters the source decoder computes the side information required by the

transform coefficient channel decoder. This interaction between source and channel coder is detailed in

Fig. 2.2. Without this side information it is not possible to reconstruct the transform coefficients from the
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decoder

bit stream as the number of bits utilized for each coefficient (in the case of constrained resolution quanti-

zation) or the probability density functions required by the arithmetic decoder (in the case of constrained

entropy quantization) are not available. Therefore the BFI is computed from the model parameters as an

erroneously decoded model results in a complete decoding failure of the remainder of the packet. On

the other hand, if the transform coefficients cannot be recovered, a signal with acceptable quality can be

recovered as the spectral envelope and the gains are available. If the transform coefficients are wrong

and the model is decoded correctly, the output of the source decoder is noise colored with the spectral

envelope of the original signal.

In order to exploit the advantages of either quantization method, the FlexCode WP1 has decided that

the source encoder can utilize either quantization method. However, this means that the source coding

platform may differ in some elements depending on the utilized quantizer.

In WP1, it has furthermore been decided that two source coding versions are developed jointly [Fle08b]:

1. the version denoted as KLT, which uses a Karhunen-Loeve transform (KLT) and constrained en-

tropy (CE, resulting in a bit stream of variable length) or constrained resolution (CR, resulting in

a bit stream of fixed length) quantization. Additionally, multiple description coding can be used in
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the case that packet losses can occur on the transmission link.

2. the low-complexity version denoted as MDCT, which uses an overlapping modified discrete cosine

transform (MDCT) and constrained resolution (CR) quantization, resulting in a bit stream of fixed

rate.

The model parameter channel encoder is identical for both versions of the source coder, however, the

amount of model parameters might be subject to changes in the different versions. The model channel

encoder is detailed in Section 2.2. The different quantization methods pose interesting problems for

the design of a flexible, generic channel coder enabling iterative source-channel decoding. The channel

coding for the constrained entropy version of the source coder will be described in Section 2.3.2, while

the channel coding for the constrained resolution quantizer will be outlined in Section 2.3.3.

2.2 Channel Encoding of the Model

As mentioned above, the FlexCode channel coder uses a separate transmission chain for the model pa-

rameters. This channel encoding and decoding chain for the model parameters is depicted in Fig. 2.3. The

model parameters are quantized in all operating modes of the source coder using constrained resolution

quantization. After grouping a bit stream is generated using a simple natural binary bit mapping.

The number of model parameters and their bit allocation can vary with the source codec setup. The model

parameters utilized in the two different setups are summarized in Table 2.1. For details we refer the

reader to [Fle08b]. The model parameter output of the source encoder consists of two informations: the

vector of quantizer indices i[Model] = (i[Model]
1 , i[Model]

2 , . . . , i[Model]
NM

)T as well as the number of quantizer

reproduction levels L[Model]
ℓ , ℓ = 1, . . . , NM utilized. The bit stream generator then generates a bit

stream consisting of N [Model]
B =

∑NM

ℓ=1 log2 L[Model]
ℓ bits. Note that the number of bits remains constant

as constrained resolution quantized is used. The generation of the bit stream is then performed using

either a natural binary or a gray bit mapping. The natural binary mapping simply maps the binary

representation of the quantizer index i[Model] to the bit pattern x[Model], for instance an index i[Model]
1 = 5

(with L[Model]
i = 16) is mapped to x

[Model]
1 = (0, 1, 0, 1)T . By definition, the MSB is the first entry of

the bit pattern vector. On the other hand, a gray mapping [JN84] can be utilized. If a gray mapping

is employed, the bit mappings of neighboring quantizer reproduction levels only differ by a single bit.

Therefore, if a single bit error occurs, the gray mapping has the advantage that the distortion in the

reconstructed signal is small.
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Figure 2.3: Block diagram of the FlexCode model parameter channel coder
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KLT version MDCT version

GMM index GMM index

16 LSF indices 16 LSF indices

5 gains (every subframe) 1 gain (every second subframe)

Pitch index 2 BWE modes for multi-mode quantization (every subframe)

5 pitch refine (every subframe)

5 pitch decay (every subframe)

Table 2.1: Model parameters to be transmitted in the KLT and MDCT codec setup

After grouping, the bit stream can optionally be protected by a CRC code [LC03]. The generator poly-

nomial of the CRC can be freely chosen, however, in the standard FlexCode setup, we selected one of

the following generator polynomials

GCRC,1(z) = 1 + z + z3 (2.1)

GCRC,2(z) = 1 + z4 + z5 + z6 + z8 . (2.2)

The generator polynomial GCRC,1(z) adds 3 additional CRC bits to bit stream and offers only poor

error detection capabilities. Therefore it is only chosen if the channel quality is such that after channel

decoding only few bit errors are expected. On the other hand, if GCRC,2(z) is used, 8 additional bits are

used for error detection. This second code exhibits much better error detection capabilities.

After the optional CRC check, the bit stream is encoded using a strong conventional channel code. This

channel code could be for instance an iteratively decodable code such as a Turbo code or an LDPC code

[Mac99], [MN96]. The bit rate for transmitting the model parameters is rather small and more or less

fixed (around 5 kbit/s, see [KO07]). As LDPC codes and Turbo codes might show a considerably high

error floor due to the small block size (and interleaver), it might be advantageous to deploy a “conven-

tional” channel coding scheme such as the concatenation of a Reed-Solomon code and a convolutional

code. This concatenation has been widely employed in existing communication systems [CHIW98]: The

convolutional decoder at the receiver, which might be a Viterbi decoder, produces burst errors at its out-

put which can be efficiently corrected by the Reed-Solomon decoder. By puncturing the convolutional

code, the rate and the robustness requirements can be efficiently adjusted.

Although several possibilities have been studied throughout the project for encoding the model bit stream,

in the final version we selected LDPC codes for several reasons:

• The complexity of the LDPC decoder, based on belief propagation[MN96] scales with the channel

quality. In good channel conditions, a small number of iterations is sufficient to successfully

decode the block while the number of necessary iterations increases if the channel quality becomes

worse.

• The LDPC code offers very strong built in error detection capabilities. After a fixed maximum

amount of allowed iterations, the hard decision output of the channel decoder is multiplied with

the parity check matrix (i.e., the parity check equations are evaluated) and if all parity check

equations are satisfied, the model parameters are declared error-free. If at least one parity check

equation is not satisfied, the block is declared erroneous and the Bad Frame Indicator (BFI) is set.

In this case, the source decoder can take appropriate measures for frame erasure concealment.

Due to these advantages, LDPC codes are selected as channel codes of choice for the model parameters.

Due to the second error-detection properties, additional error detection by means of CRC codes is no

longer necessary. Therefore, the CRC check in Fig. 2.3 can be bypassed. Three different LDPC codes
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can be utilized in the final FlexCode channel code. During operation, the coder can select either of

these three depending on the assumed transmission quality. The 3 codes are all regular LDPC codes

constructed using MacKay’s algorithm [Mac99]

• a regular (160, 110) LDPC code C1 generating 50 parity bits

• a regular (210, 110) LDPC code C2 generating 100 parity bits

• a regular (410, 110) LDPC code C3 generating 300 parity bits

As the number of input bits may vary from one codec configuration to the other, the code has to be short-

ened. Therefore, the input bit stream of length N [Model]
B (with N [Model]

B ≤ 110 bit) is padded with zeros,

encoded, and after encoding the padded zeros are removed again prior to transmission. At the receiver,

the knowledge that part of the input bit stream have been zeros can be used as a priori information in

the belief propagation decoder. Therefore, the rates of the three LDPC codes are
N [Model]

B

N [Model]
B

+50
,

N [Model]
B

N [Model]
B

+100
,

or
N [Model]

B

N [Model]
B

+300
, respectively. Additionally, the codes can be punctured for an code rate adaptation with

finer granularity. This is achieved by not transmitting part of the parity bits. At the receiver these parity

bits are then considered to be erasures. The puncturing is performed such that at least two non-erased bit

nodes are connected to each check node in the Tanner graph.

The decoder of the model parameter transmission chain performs the inverse operation of the encoder

and reconstructs the model parameters which are then used to generate the necessary side information

for the transform coefficients (see Fig. 2.2).

2.3 Channel Encoding of the Transform Coefficients

The transform coefficients on the other hand are encoded using an iterative source-channel coding sys-

tem. For a detailed description and implementational details of this joint source-channel coding approach

with iterative decoding, we refer the reader to the literature, e.g., [ACS08]. As the approach depends on

the type of quantization (constrained resolution or constrained entropy) two cases and two different cod-

ing schemes have to be considered. The details for both cases will be given in Sections 2.3.2 and 2.3.3.

During the development of both coding systems, the compatibility and interoperability of both platforms

was a required constraint. Therefore, most modules can be be used in both versions and the concept

remains more or less the same.

The basic concept is identical for both quantization modes: a bit stream is generated and a block en-

coder adds a certain amount of artificial redundancy (depending on the overall coding rate) to the bit

stream. This bit stream is interleaved using the interleaver presented in Sec. 2.3.1 and then encoded by

a convolutional encoder. At the receiver, a MAP decoder and an SDSD (which may exploit the residual

redundancy of the transform coefficients, if available) iteratively exchange extrinsic information. After

a certain number of iterations have been carried out, the transform coefficients are estimated using the

MAP rule.

The information about the bit allocation (in the case of constrained resolution quantization) or the quan-

tizer step sizes and parameter distribution (in the case of constrained entropy quantization) is derived by

the FlexCode source decoder from the model parameters which are decoded first. This information is

then used by the soft decision source decoder in the iterative source-channel decoding process.

2.3.1 Flexible Interleavers

Due to the fact that the size of the bit stream to be encoded and transmitted can vary from frame to

frame, flexible interleavers that can automatically interleave and deinterleave frames of different lengths
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are required. Furthermore, the interleavers have to fulfill several properties, like the S-property, in order

to be suitable for iterative decoding. For details, we refer the reader to Chapter 2.5 in [Fle08c] where a

detailed description of S-random interleavers is given.

The flexibility of the interleaver is achieved by pruning an S-random interleaver according to the tech-

nique presented in [FSB02]. The generation of such an interleaver is also highlighted in [Fle08c]. If

the size of the smallest possible interleaver and the largest possible interleaver differ by a factor larger

than two, it can be beneficial to generate several prunable interleavers and to select the according one.

This has to be done as the S parameter has to be fixed for the minimum size of the interleaver and the

performance degrades with small interleaver size, respectively with small S.

2.3.2 Constrained Entropy (CE) case

In the case of CE quantization, an arithmetic encoder generates a variable-length bit stream using the

statistical information on the transform coefficients. Usually it is assumed that the transform coefficients

are Gaussian distributed. The source encoder then estimates the variance of the Gaussian distribution.

Using this variance and the quantizer step size, probabilities of occurrence of the different quantized

transform coefficient indices can be determined. These are used in the arithmetic coder to perform the

entropy coding. Details have already been given in [Fle08c].

The basic block diagram of the FlexCode channel coder with constrained entropy quantization is given in

Fig. 2.4. For the transmission of the model parameters, an LDPC code is selected. The description of the

model parameter transmission chain has already been outlined in Section 2.2. The transform coefficients

are arithmetically encoded using the side information from the source encoder and the resulting bit stream

(of variable length) is then encoded by a serially concatenated product code: after a first encoding by

the outer channel encoder, puncturing, and interleaving, the inner channel encoder performs a second

channel coding step. This inner channel code is a recursive convolutional code. Two operation modes

can be selected:
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Figure 2.4: Block diagram of the FlexCode channel coder with constrained entropy quantization
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• The inner code consists of a recursive convolutional code code of constraint length L + 1 = 4,

rate rCI = 1 and generator polynomial GI(z) = 1
1+z−1+z−2+z−3 . The outer code is a code

which partitions the arithmetically coded bit stream into groups of several bits. A small block code

which adds one or several parity bits depending on the number of available redundancy bits, is then

assigned to these groups. The assignment of block codes to the groups of bits can be optimized

using the concept of irregular codes and index assignments [TH02a], [SVCS08], [Fle08c] (see also

Section 4). At the receiver, the outer channel decoder consists then of an SDSD which does not

exploit any statistical properties as the bits after arithmetic coding are assumed to be equiprobable.

The SDSD reduces in this case to a MAP decoding of the single block codes. For an optimization

of the selection of the outer block codes and details of the implementation, we refer the reader to

Section 4.4.

• In the second setup, the inner code is a convolutional code of constraint length L + 1 = 2, rate

rCI = 1 and generator polynomial GI(z) = 1
1+z−1 . The outer code is a rate < 1 convolutional

code. The overall channel coding scheme then reduces to a convolutional product code, also

commonly referred to as serial Turbo code [BM02], [BDMP98a], [BDMP98b]. Both channel

decoders at the receiver are MAP decoders according to [BCJR74], [RVH95].

The interleaver is a flexible interleaver as described in Section 2.3.1. The reason for placing the puncturer

in between both channel encoders and not prior to the transmission over the channel (as would be the

conventional way to place it) will be detailed in Section 2.3.2.4.

The decoder structure is given in the bottom part of Fig. 2.4. First the model parameters are decoded and

using these model parameters, the source decoder extracts the side information necessary for arithmetic

decoding. On the other hand, the transform coefficients are decoded using the iterative decoder based on

the Turbo principle. Both model parameter and transform coefficient channel decoding can be executed

in parallel as they do net rely upon each other. After a certain number of iterations, the bit stream

generated by the transform coefficient decoder is fed to the arithmetic decoder which reconstructs the

transform coefficients. The arithmetic encoder and decoder are described in detail in [Fle08c] and in

Section 2.3.2.1.

It shall be noted that by a proper selection of the inner and outer codes, the channel coding part can

be completely disabled and the arithmetically coded bit stream is directly fed to the channel. This is

especially important if no bit errors are expected on the transmission link, e.g., in pure packet oriented

networks.

In the following Sections, several components of the FlexCode source- and channel coding system are

described in detail.

2.3.2.1 Arithmetic Coding for FlexCode

The FlexCode source encoder outputs quantized indices iℓ which are entropy coded using an arithmetic

coder [BCK07], [BCW90]. The arithmetic coder generates the bit stream and is considered to be part of

the channel coder in FlexCode. In order to get the best possible compression by the arithmetic decoder,

an appropriate model has to be used. The easiest possibility would be to use the average probabilities

of occurrence of the quantized indices, however, this would not be very accurate as the speech and

audio file to be encoded describes generally a highly non-stationary process thus leading to sub-optimal

compression ratios. Therefore, an adaptive model is used in order to accurately calculate the probabilities

of occurrence of the different indices to be encoded. The source encoder assumes the different transform

coefficients (after KLT) to be Gaussian distributed. The variances of the distribution can be computed

using the model parameters (e.g., spectral envelope) and the knowledge of the utilized transform.
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The quantizer that is used in the FlexCode constrained entropy source encoder is a uniform scalar quan-

tizer. The quantizer outputs indices iℓ ∈ Z, ℓ ∈ {1, . . . , NT } with NT being the amount of transform

coefficients per frame. The quantizer maps all elements in the interval [sℓ(iℓ − 1
2); sℓ(iℓ + 1

2)) to the

index iℓ. The quality of the quantizer (and thus also the overall source coding rate) is controlled by the

quantizer step size sℓ. The step size is determined by the source encoder (and decoder) and then passed

to the channel encoder, i.e., to the arithmetic encoder. In order to simplify the calculation of the proba-

bility intervals, we define the effective step size sℓ,eff
.
= sℓ

σℓ
with σℓ being the standard deviation of the

ℓ-th transform coefficient. This effective step size is the step size normalized to a unit-variance Gaussian

probability density function (pdf). Using the effective step size we can calculate the probabilities of

occurrence of the different transform coefficients by evaluating

P (iℓ|sℓ,eff) =
1

2

(

erfc

(

sℓ,eff

(
iℓ − 1

2

)

√
2

)

− erfc

(

sℓ,eff

(
iℓ + 1

2

)

√
2

))

. (2.3)

The arithmetic encoder, as described for instance in [BCW90], starts by dividing the probability interval

[0; 1) into smaller intervals which correspond to the probabilities of occurrence of the different symbols.

The encoder picks one of those intervals according to the symbol which shall be encoded and then further

subdivides this interval. The bit stream finally corresponds to one number inside this interval (usually the

number the representation of which needs the least bits). The implementation of the arithmetic decoder

utilizes fixed-point arithmetic and is based on [BCK07]. In constrained entropy quantization, theoret-

ically an infinite number of quantized indices can occur. For this reason, the cumulative distribution

function (cdf) is used for the computation of the intervals. For a Gaussian distribution with unit variance

and zero mean, the cdf is given by

Fn(a) =

∫ a

−∞
pn(ζ)dζ = 1 − 1

2
erfc

(
a√
2

)

. (2.4)

This cdf can be stored in a lookup table (LUT) in order to facilitate the computation. During en-

coding, the arithmetic encoder selects the lower bound of the selected probability interval to be

Fn

(
sℓ,eff(k)

(
iℓ − 1

2

))
and the upper bound to be Fn

(
sℓ,eff(k)

(
iℓ + 1

2

))
. Using these bounds the

probability intervals can be refined during arithmetic encoding. At the decoder, the encoding procedure

is reverted and from the bit stream, the indices îℓ are recovered. The arithmetic decoder has knowledge

of the variances (from the decoded model parameters) and can then search for the appropriate indices.

The arithmetic decoder starts the search by trying the intervals that have the larges probability, i.e.,

0,±1,±2, . . .. This reduces the decoding complexity.

2.3.2.2 Error Detection in Arithmetic Coding

As the arithmetic is very sensitive to transmission errors, and even a single bit error may cause the

complete frame to be erroneous (see also Section 2.3.2.1 and 2.3.2.3), error detection for the transform

coefficients may also be desirable. In the case an error has been detected, the FlexCode source decoder

can take appropriate error concealment measures. An elegant way to incorporate error detection in arith-

metic decoding is the use of a forbidden interval, presented in [KCR98]. Instead of using the complete

probability interval [0; 1) for encoding the symbols, only a portion of length 1−ǫ, with 0 ≤ ǫ < 1 is used

for encoding. The other portion, of length ǫ is called forbidden interval and is never used during encod-

ing. If the decoder happens to operate in the forbidden interval, a transmission error must have occurred

previously and the complete block of data can be marked as erroneous. However, the use of a forbid-

den interval reduces the utilizable probability interval which results in a frame overhead. According to

[KCR98], this rate overhead is − log2(1−ǫ) per encoded symbol. It has been found that acceptable error
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detection capabilities in the FlexCode scenario are achieved with ǫ > 0.1. If for example 320 transform

coefficients (a typical value) shall be encoded in a frame, additional 75 bits (i.e, 3.75 kbps) have to be

used for error detection with ǫ = 0.15. In the final version of FlexCode however, ǫ has been set to zero,

as it is advantageous to use the additional available bit rate for error correction.

2.3.2.3 Reordering of Transform Coefficients

It is well known that a single bit error can cause the arithmetic decoder to generate a completely

wrong output sequence (error propagation). However, as the arithmetic decoder, implemented accord-

ing to [BCK07], operates sequentially, the output sequence is correct up to the point where the bit error

occurs. Therefore, if for example after channel decoding, there is a single bit error in the middle of the

(decoded) bit stream, the first half of the transform coefficients is most likely decoded correctly while the

second half is erroneous. As iterative decoders have a noticeable error-floor, single bit errors may occur

after channel decoding in bad channel conditions. Therefore it is advantageous to place the most impor-

tant transform coefficients at the beginning of the frame resulting in unequal error protection (UEP).

The reordering strategy in FlexCode is to order the transform coefficients according to the variances of

their pdf in descending order, i.e., transform coefficients having a pdf with a high variance are placed at

the beginning of the block. The reason for this is that if the variance is large, the probability distribution

approaches a uniform distribution and the probability intervals in the arithmetic decoder are small and of

similar sizes. Therefore, it is essential that the arithmetic decoder picks the right interval. On the other

hand, if the variance is very small, the pdf becomes Dirac-like and the quantization index at zero has a

large probability interval. Those coefficients are placed at the end of the block because the probability

that the arithmetic decoder picks accidentally this interval (if a bit error has occurred beforehand) is quite

high and therefore the coefficient is likely decoded correctly.

A simulation example shall prove the advantages of the transform coefficient reordering. It is assumed in

the example that all the model parameters are decoded correctly (they are transmitted over an error-free

side channel). The transform coefficients are transmitted using the FlexCode channel coder over a simple

AWGN channel using a simple decoder setup with only 2 iterations. The MOS scores of the system with

and without reordering are depicted in Fig. 2.5 over the channel quality Es/N0. It can be seen that by
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Figure 2.5: Influence of the reordering of transform coefficients on the subjective quality
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the simple measure of reordering the transform coefficients, the perceived quality can be dramatically

increased if the channel starts to become bad. Note that a preliminary codec version with low overall

quality has been used for recoding this plot, however, the effect of reordering will also be visible in the

higher quality versions as the reordering does not modify the quality in error-free conditions.

2.3.2.4 Rate Adaptation

The rate adaptation is achieved by puncturing, i.e., not transmitting some of the bits and assuming at the

receiver that those bits have been erased during transmission [Hag]. There exist basically two possibilities

for placing the puncturing unit for rate adaptation. The first straightforward possibility would be to place

the unit after the channel coding, prior to modulation and transmission (i.e., immediately behind the

block Inner Channel Encoder in Fig. 2.4). However, this causes problems in the present setup where the

length of the arithmetically coded bit stream may vary from frame to frame and is not known beforehand

at the receiver. The receiver only gets the size of the complete frame after channel coding. However,

in order to apply puncturing and depuncturing (filling up the received bit stream with erasures at the

receiver) the size has to be known beforehand. A small example shows the problems that can occur

due to now knowing the size of the original input frame. Imagine a rate 1/2 convolutional code that is

punctured with the following puncturing matrix

P =

(
1 0 0 0 0 0
0 0 1 0 1 1

)

. (2.5)

Each line of the the puncturing matrix corresponds to one output of the convolutional encoder and each

column corresponds to a time step. The puncturing matrix will be periodically repeated of more bits

than the width of the puncturing matrix are encoded. The convolutional encoder of rate 1/2 encodes a

vector x = (x1, x2, x3, x4) into a vector y = (y
(1)
1 , y

(2)
1 , y

(1)
2 , y

(2)
2 , y

(1)
3 , y

(2)
3 , y

(1)
4 , y

(2)
4 ). After puncturing

with P, the vector yP = (y
(1)
1 , y

(2)
3 ) is obtained. At the receiver, erasures are placed at the punctured

positions priori to decoding. If the length of the vector y is unknown it is impossible to construct a

vector with the same length, as all vector y of length 6, 7, 8, or 9 are punctured to a length 2 vector.

As the output of the arithmetic encoder differs in length from frame to frame, conventional puncturing

cannot be applied as the channel decoder will be unable to reconstruct the original length of the input

bit stream to the arithmetic decoder. Therefore, an unambiguous puncturing algorithm is required that

allows to reconstruct the bit stream of correct length at the receiver. Instead of transmitting and encoding

the length of the arithmetically coded bit stream, we exploit a property of the arithmetic decoder and do

not aim at recovering a bit stream of the same length but a bit stream that will yield the same result after

arithmetic decoding.

As the output of the arithmetic encoder is the binary representation of a number between 0 and 1, ad-

ditional zeros can be added to the arithmetically encoded bit stream without changing the information.

These additional zeros have no influence on the decoder and can thus be used to realize an unambiguous

puncturing scheme. Therefore the channel encoder adds additional zeros to the output of the arithmetic

encoder until after encoding and puncturing the last entry utilized in the puncturing matrix is a “1”. In

the example presented above, we have to add a single zero to x resulting in x′ = ((x1, x2, x3, x4, 0)

which is encoded to y′ = (y
(1)
1 , y

(2)
1 , y

(1)
2 , y

(2)
2 , y

(1)
3 , y

(2)
3 , y

(1)
4 , y

(2)
4 , y

(1)
5 , y

(2)
5 ). The decoder can now un-

ambiguously reconstruct the length of the original bit stream as the puncturing matrix is known and the

rule that the last utilized entry is a “1” has been applied at the receiver.

The puncturer has been placed after the outer channel encoder as the addition of zeros at the input bit

stream is then simplified. This somewhat unconventional placement of the punturer has to be considered

by the decoder to by placing puncturer and depuncturer within the iterative loop. However, there is no

considerable performance loss by placing the puncturer at this position as shown within the project.
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2.3.2.5 Multiple Description Coding

In packet oriented transmission scenarios, packet erasures occur frequently. The main tool for combating

packet erasures in FlexCode are multiple description codes [Goy01], [Vai93]. Multiple description codes

split the signal into several description which are transmitted separately over the transmission link. If all

the descriptions are received the signal can be reconstructed with high quality. If some of the descrip-

tions are missing but if at least one description is received, the signal can be reconstructed with inferior

quality. Note that in contrast to hierarchical coding (as used, e.g., in the ITU-T G729.1 [IT07]) any of

the descriptions suffices to reconstruct the signal.

Due to the special structure of the FlexCode source coder, the model is absolutely necessary to reconstruct

the information for decoding the transform coefficients. The model also needs to be available in full

quality at the receiver. Therefore, as the model is absolutely necessary, it has to be transmitted in each

description such that the model can be fully reconstructed even if only one description is received. Due

to this fact, it has been decided to use only two descriptions in FlexCode in order to minimize the rate

overhead by transmitting the model in each description [Fle08b], [ZKK09], [KK09].

The block diagram of the channel encoder with multiple description coding (MDC) is depicted in Fig. 2.6.

The FlexCode source encoder emits the model which is encoded using the same blocks as in Fig. 2.3 and

two descriptions of the model parameters. Both descriptions are independently encoded using an arith-

metic encoder followed by the serially concatenated channel coder known from Fig. 2.4. The channel

encoded model bits are attached to each descriptions and both descriptions are transmitted independently

over the FlexCode channel model.
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As the model is included in both descriptions, the principle of information combining [LHHH05], or

diversity transmission [LC03], respectively, can be applied. In the L-value domain, information combin-

ing is achieved by adding the received L-values. This can be seen in the bottom part of Fig. 2.6 where

the received L-values (if available) of the model parameters are summed up prior to channel decoding.

If the description has been received, the transform coefficients of the respective description are channel

decoded and using the information from the model parameters, arithmetic decoding can be applied. The

FlexCode source decoder reconstructs the signal using either the decoded indices from one or both de-

scriptions. If both descriptions are lost on the transmission link, frame erasure concealment has to be

performed in the source decoder.

2.3.2.6 Turbo Source Coding

It has been shown in [Tho07], [TSV08] that fixed length coding can achieve similar performance as

variable length coding by reducing the computational complexity if iterative decoding is employed at

the receiver. In [SV09] it has been shown how the parameter individual block codes can be optimized

in an ISCD system that yields error-resilient near-lossless source compression. High compression ratios

can be achieved with the system proposed in [SV09]. For this reason, it has been studied if the Turbo

source coding scheme can also be employed in the final FlexCode channel coder, as arithmetic coding

is sensitive to transmission errors and requires strong channel coding whereas the Turbo source coding

approach can inherently cope with errors on the transmission channel. For details, we refer to Section 4.5

which gives an application example and optimization guidelines for Turbo source coding based on ISCD.

The block diagram for the FlexCode channel coder for constrained entropy quantization using Turbo

source coding is depicted in Fig. 2.7. The model parameters are transmitted using the same channel

coding chain as already given in Fig. 2.4. The only modification is the transmission of the transform

coefficients. The arithmetic decoder is not used in this setup, and instead, the quantized indices are

truncated and a parameter individual block code is assigned to each transform coefficients. For details,
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we refer the reader to Section 5.5.1 in [Fle08c] which gives an example of a selection of the parameter

individual block codes in dependency of the effective quantizer step size (which takes into account the

variance of the transform coefficient distribution). The inner channel coder is a rate > 1 convolutional

encoder, i.e., the actual compression is performed by the inner channel encoder. At the receiver, iterative

source-channel decoding is performed and the soft decision source decoder makes use of the distribution

of the signal and the knowledge of quantizer step size in order to generate a priori knowledge of zeroth

order which is then exploited by the SDSD [ACS08].

However, the Turbo source coding approach for joint source compression and channel coding has not

been considered in the final version of the FlexCode channel coder which is used by the demonstrator,

mainly for complexity reasons. If an error-free transmission channel is present, the complexity of the

arithmetic encoding and decoding is very small and their is almost no additional channel decoding com-

plexity (a single iteration suffices in this case). On the other hand, if Turbo source coding is utilized,

a high computational complexity is required even in error-free conditions as the ISCD loop has to be

executed with a large number of iterations until convergence is observed.

2.3.3 Constrained Resolution (CR) Case

In the case of CR quantization, the source encoder determines the number of quantization levels Lℓ (and

thus also the number of required bits NB,ℓ) for each transform coefficient. Unlike in the CE case, where

the arithmetic encoder generates a bit stream, this is different in the CR case. As the model parameters

are also quantized using constrained resolution, the bit stream generation is similar to the case described

in Section 2.2. The transform coefficient quantization index i[TC]
ℓ has been quantized using Lℓ = 2NB,ℓ

levels and the natural binary representation of i[TC]
ℓ gives the bit pattern x

[TC]
ℓ = (x[TC]

ℓ,1 , . . . , x[TC]
ℓ,NB,ℓ

).
This operation is performed in the block Bit mapping in the block diagram of the constrained resolution

(CR) channel coder given in Fig. 2.8. If, due to adverse channel conditions, additional channel coding

redundancy is required, one or several parity check bits are added to each transform coefficient. This is

performed by the block Parameter Individual Block Code in Fig. 2.8. The Bit Distribution Algorithm

(BDA) determines the selection of the parameter individual block codes. More details on the BDA can

be found in Section 2.3.3.1. The selection of appropriate parameter individual block codes is described

below.

After parameter individual block coding, the resulting bits of a complete frame are interleaved and en-

coded by the inner channel encoder, which is a recursive systematic rate 1/2 convolutional encoder with

generator polynomials GI,1(z) = 1 and GI,2(z) = 1
1+z−1+z−2+z−3 with puncturing. By puncturing the

systematic bits, this code can be rendered into a rate-1 code which has been proven to give good results

for iterative source-channel decoding. If the transmission channel is expected to be good, rate < 1 inner

coding is utilized as the number of decoding iterations can then be reduced, thus reducing the overall de-

coding complexity. If the channel is expected to become worse, the inner code is punctured to rate 1 as in

this case the highest gains by iterative decoding are expected. In that case, the redundancy is only added

by the outer code component, i.e., the parameter individual block code. After inner channel coding, the

bit stream of the transform coefficients is concatenated with the bit stream of the model parameters and

the frame is transmitted over the FlexCode channel model. At the receiver, first the model parameters

are decoded and fed together with the BFI (for frame erasure concealment purposes) to the FlexCode

source decoder. For details, see Section 2.3.2. The transform coefficients are decoded using iterative

source-channel decoding (ISCD). The basic ISCD principle has already been presented in [Fle08c]. For

a thorough introduction to ISCD, we refer the reader to [ACS08]. The soft decision source decoder gets

the information from the BDA and can decode the parameter individual block code using soft decision

source decoding. The soft decision source decoder (SDSD) can exploit all available statistical side infor-

mation on the transform coefficients such as an unequal distribution or correlation as well as the artificial
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Figure 2.8: Block diagram of the FlexCode channel coder with constrained resolution quantization

redundancy added by the parameter individual block code. Due to complexity reasons and in order to

maintain the real time requirements for the demonstrator, we only consider unequal distribution of the

transform coefficient indices (a priori knowledge of order zero).

The first simulation example shows a snapshot of the FlexCode coding system: The FlexCode source

coder operates at a coding rate of 24 kbit/s and the channel coder at a coding rate of 1/2. Model pa-

rameters and transform coefficients are encoded with rate 1/2 such that the total amount of data to be

transmitted on the channel amounts to 48 kbit/s. Figure 2.9 shows a snapshot of the EXIT chart [ten01]

analysis of the system. It can be seen that a (narrow) decoding tunnel exists between the characteristic

of the channel code CCC (code punctured to rate-1) and the characteristic of the SDSD CSDSD. Note that

the SDSD in this example does not exploit any residual redundancy in the quantized parameters. Better

performance is obtained if redundancy such as unequal parameter distribution is exploited.

The effect of achieving higher performance by exploiting unequal transform coefficient quantizer index

distribution is shown by the next simulation example. A preliminary version of the MDCT source en-

coder with CR quantization has been used with the FlexCode channel coder and transmission over an

AWGN channel with varying Es/N0. The overall coding rate has been set to 1/2. The model has been

protected with an LDPC code. The unequal distribution of the FlexCode source encoder has been mea-

sured offline by means of oversampled histograms using the FlexCode speech database. MOS scores for

SDSD with and without the exploitation of a priori knowledge over varying channel quality are depicted

in Fig. 2.10 for 2 and 4 receiver iterations, respectively. It can be seen that the utilization of zeroth order
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Figure 2.10: Influence of the exploitation of a priori knowledge on the decoding performance

a priori knowledge slightly improves the decoding quality as expected [FV01], [Fin98]. Further gains

are expected by exploiting the inter-frame correlation of the transform coefficients.

The overall performance of the system can basically be controlled by a careful selection of the parameter

individual block codes (PIBC). In order to show how the PIBCs can be carefully selected, we use the

following notation: the ℓ’th transform coefficient is quantized using Lℓ quantization levels and therefore,

after natural binary bit mapping, a bit vector x
[TC]
ℓ = (x[TC]

ℓ,1 , . . . , x[TC]
ℓ,NB,ℓ

) is obtained with NB,ℓ =

log2 Lℓ. The parameter individual block code determines a bit vector y
[TC]
ℓ consisting of NB,ℓ+NP,ℓ bits,

i.e., additional NP,ℓ parity bits are generated by the code. Therefore, y
[TC]
ℓ = (y[TC]

ℓ,1 , . . . , y[TC]
ℓ,NB,ℓ+NP,ℓ

).
As each transform coefficient can be quantized using a different number of bits due to the flexibility of the

source encoder and the Fox algorithm used for constrained resolution quantization and as the number of

additional parity bits depends on the gross bit rate available on the channel (the number of parity bits per

parameter is determined by the bit distribution algorithm, the codes that are utilized should have a certain

structure and the parity bits should be determinable by simple operations. Due to these constraints, it is

not feasible to store a large number of optimized codes but is useful to store only a certain structure of

the code. Two different code families have been studied in the FlexCode project:
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• Multiple parity check (MPC) codes. It has been shown in, e.g., [CAV06], that a single parity check

code shows good performance in Iterative Source-Channel Decoding. Therefore, the first family of

codes simply computes the parity check of all bits of x
[TC]
ℓ and then repeats it. For instance, if the

bit distributor assigns NP,ℓ parity bits to a transform coefficients, all NP,ℓ parity bits are obtained

by

y[TC]
ℓ,NB,ℓ+1 = y[TC]

ℓ,NB,ℓ+2 = . . . = y[TC]
ℓ,NB,ℓ+NP,ℓ

= x[TC]
ℓ,1 ⊕ x[TC]

ℓ,2 ⊕ · · · ⊕ x[TC]
ℓ,NB,ℓ

. (2.6)

As the code is assumed to be systematic, the first NB,ℓ entries of y
[TC]
ℓ are given by

y[TC]
ℓ,i = x[TC]

ℓ,i , ∀i ∈ {1, . . . , NB,ℓ} . (2.7)

This general generator matrix of such a code is

GMPC =
(
INB,ℓ

1NB,ℓ,NP,ℓ

)
(2.8)

with INB,ℓ
denoting the NB,ℓ × NB,ℓ identity matrix and 1NB,ℓ,NP,ℓ

denoting the NB,ℓ × NP,ℓ

all-one matrix (i.e., a matrix containing only 1’s).

• Following [Bre09], a different class of codes is studied. They have shown to perform better than

multiple parity check if NB,ℓ > 5. As this may occur frequently in the FlexCode source coder due

to the multi-mode quantization, these codes have also been studied. The code is again systematic,

i.e., y[TC]
ℓ,i = x[TC]

ℓ,i , ∀i ∈ {1, . . . , NB,ℓ}. The first parity bit is obtained again by performing a parity

check over all bits of x
[TC]
ℓ , i.e.,

y[TC]
ℓ,NB,ℓ+1 = x[TC]

ℓ,1 ⊕ x[TC]
ℓ,2 ⊕ · · · ⊕ x[TC]

ℓ,NB,ℓ
(2.9)

=

NB,ℓ⊕

j=1

x[TC]
ℓ,j (2.10)

The following parity check bits then exclude one of the systematic bits, i.e., they are obtained by

y[TC]
ℓ,NB,ℓ+1+i =

NB,ℓ⊕

j=1

j 6=1+((i−1) mod NB,ℓ)

x[TC]
ℓ,i . (2.11)

For the example of NB,ℓ = 4 and NP,ℓ = 7 the generator matrix looks like follows:

G
[4,7]
OPT,ℓ =







1 0 0 0 1 0 1 1 1 0 1
0 1 0 0 1 1 0 1 1 1 0
0 0 1 0 1 1 1 0 1 1 1
0 0 0 1 1 1 1 1 0 1 1







. (2.12)

Due to the special structure of this code the parity bits are also easy to generate using simple binary

operations and the generator matrices do not need to be explicitly stored.

Both code families have been compared in a simulation setup similar to the one in Section 2.3.2.3. A

preliminary version of the MDCT source encoder with CR quantization has been used with the FlexCode

channel coder and transmission over an AWGN channel with varying Es/N0. The source coding rate

has been 16kbps and the gross transmission rate 32kbps leading to an overall coding rate of 1/2. The

model has been protected with an LDPC code. MOS scores for both codes and a varying channel quality

are depicted in Fig. 2.11 for 2 and 5 receiver iterations, respectively. It can be seen that the repeated mul-

tiple parity check codes (first code presented above) has a significantly lower quality than the optimized

algorithm according to [Bre09]. Therefore, the optimized parameter individual block code algorithm is

chosen for the final FlexCode channel coder setup.
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Figure 2.11: Comparison of different parameter individual block codes

2.3.3.1 Rate Adaptation

The rate adaptation in the constrained resolution channel coder is performed by using different parameter

individual block codes for each transform coefficient. The channel coder knows the source encoder bit

rate and the gross bit rate allowed on the channel. Therefore, it can compute the number of bits that

the channel encoder is allowed to add to each frame. After subtraction of the number of bits which

will be added by the inner channel encoder (in the case of rate 1 inner channel encoding, only the zero

termination bits will be added by the inner convolutional code), the number of bits N [tot]
PIBC that are going

to be added by the parameter individual block code can be determined. Furthermore, let N [tot]
TC,source the

number of bits utilized by the source encoder for the transform coefficients (TC) and let N [tot]
TC,coded be

the number of bits for the transform coefficients after parameter individual block coding. Therefore

N [tot]
TC,coded = N [tot]

TC,source + N [tot]
PIBC. Furthermore, NTC denotes the number of transform coefficients per

frame. The bit distribution algorithm (BDA) takes care of selecting the appropriate number of parity bits

for each transform coefficient. Two different bits distribution algorithms have been studied during the

FlexCode project:

• Algorithm 1: First,

⌊

N [tot]
PIBC

NTC

⌋

bits are distributed to each transform coefficient and then 1 additional

bit is distributed to the first N [tot]
PIBC − NTC ·

⌊

N [tot]
PIBC

NTC

⌋

transform coefficients.

• Algorithm 2: while the first algorithm tries to achieve a more or less constant number of par-

ity bits per parameter, the second algorithm tries to achieve a more or less constant coding rate

for each transform coefficient. The total coding rate of the parameter individual block coding is
N [tot]

TC,source

N [tot]
TC,coded

. The bit distribution algorithm aims at distributing the bits such that this rate is obtained

for each transform coefficient. If the source coder determines that N [TC]
i bits (or Li = 2N [TC]

i

quantization levels) are employed for each transform coefficient, then the bit distributor assigns
⌊(

N [tot]
TC,coded

N [tot]
TC,source

− 1

)

N [TC]
i

⌋

additional parity bits to each transform coefficient. One additional parity
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Figure 2.12: Comparison of both bit distribution algorithms

bit is then assigned to the remaining N [tot]
PIBC −

NTC∑

i=1

⌊(
N [tot]

TC,coded

N [tot]
TC,source

− 1

)

N [TC]
i

⌋

transform coefficients.

Both algorithms have been compared in a simulation setup similar to the one in Section 2.3.2.3. A

preliminary version of the MDCT source encoder with CR quantization has been used with the FlexCode

channel coder and transmission over an AWGN channel with varying Es/N0. The source coding rate

has been 16kbps and the gross transmission rate 32kbps leading to an overall coding rate of 1/2. The

model has been protected with an LDPC code. MOS scores for both setups and a varying channel quality

are depicted in Fig. 2.12 for 3 and 4 receiver iterations, respectively. It can be seen that the first, simpler

algorithm 1 outperforms algorithm 2, which tries to maintain a constant coding rate for each transform

coefficient. Therefore, the first algorithm is chosen for the final FlexCode channel coder setup.

2.3.3.2 Multiple Description Coding

Multiple description coding can also be applied to constrained resolution quantization. The principle is

the same as in the constrained entropy case leading to a similar block diagram. The block diagram of

the constrained resolution multiple descriptions channel codec is given in Fig. 2.13. Again the FlexCode

source encoder outputs the model coefficients, which are encoded using the system given in Section 2.2

and two descriptions for the transform coefficients, which are encoded using the serial concatenation of

a parameter individual block code and a convolutional encoder (see Section 2.3.3, Fig. 2.8). According

to [KK09], [ZKK09], only two descriptions are used and each description contains a copy of the model

parameters. Both descriptions are transmitted independently over the FlexCode channel model and at

the receiver first the L-values model parameters are combined (diversity transmission, see also Sec-

tion 2.3.2.5), decoded and using the side information generated by the FlexCode source decoder, both

descriptions of the transform coefficients can be decoded using the ISCD system introduced beforehand.

The source encoder then reconstructs the audio signal using the model parameters and either both or a

single description of the transform coefficients. If both descriptions are lost, frame erasure concealment

has to be performed. Throughout the project, it has been decided that the multiple description operation

for constrained resolution quantization is not used by the source encoder.
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Chapter 3

Complexity-Reduced Iterative

Source-Channel Decoding

In this Chapter, we give hints how the complexity of Iterative Source-Channel Decoding can be reduced.

We present two strategies for complexity reduction, which are

• conditional quantization

• reduced-search source decoders.

The concept of conditional quantization, presented in [SVAC08] is a concept to exploit the auto-

correlation of the source parameters during the quantization process. This results however in a modified

quantizer and therefore also in a quality loss. The second principle reduces the amount of operations in

the source decoder by reducing the search space of the source decoder [SVA08]. The advantage of this

method is that the maximum achievable reproduction quality is not altered. Both algorithms can also be

combined if a quality loss can be tolerated.

The execution of the SDSD, however, can be computationally quite demanding, especially if large quan-

tizer codebooks are employed. In non-iterative transmission systems, it is possible to execute the SDSD

only for the most significant bits, as proposed in [LK03]. However, if such a source decoder is utilized in

an ISCD transmission scheme, the source decoder can only generate extrinsic information for the most

significant bits, leading to a sub-optimal performance.

Therefore, we propose a different approach for a complexity-reduced ISCD receiver. It has been observed

that quite a high number of certain pairs of consecutive quantized values (ūκ, ūκ−1) occur with small

probabilities if the sequence is correlated. If the transmitter is modified in a way that these transitions

are not allowed, the SDSD does not need anymore a fully developed trellis, but a trellis with a reduced

number of state transitions. Note that only the number of state transitions is reduced while the number of

states remains the same. This differs from the M -algorithm [FA98], which works with a reduced number

of states.

However, the conditional quantizer also affects the quality of the reconstructed signal. Therefore, we

propose a receiver-only approach called M -SDSD. This approach is similar to the well-known M -

algorithm [WM04], [FA98], known from channel decoding. A similar approach has also been intro-

duced in [Adr03]. We show that the number of operations can be considerably reduced by only slightly

affecting the overall system performance. Furthermore, by combining the M -SDSD with the conditional

quantization we show that the complexity can even further be reduced.

First, in Section 3.1 the basic abstract system model is presented. This system model is utilized through-

out this chapter in order to simply demonstrate the concepts of the complexity reduction algorithms.

Adapting the findings of this chapter to the FlexCode channel decoder is a more or less trivial task. In
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Section 3.2 a first concept for complexity reduction is presented, called conditional quantization. The

complexity can be further reduced by modifying the search-space of the source decoder in Section 3.3.

It is also shown how both concepts can be combined in Section 3.3.

3.1 System Model

In the following, we will briefly review the iterative source-channel decoding (ISCD) system. In

Fig. 3.1 the baseband model of ISCD is depicted. At time instant t a source encoder generates a frame

ut = (u1, . . . uKS
) of KS unquantized source codec parameters uκ, with κ ∈ {1, . . . , KS} denoting

the position within the frame. Each value uκ is individually mapped to a quantizer reproduction level

ūκ, with ūκ ∈ U = {ū(1), . . . , ū(Q)}. The set U denotes the quantizer codebook with a total number of

|U| = Q codebook entries. A unique (bipolar) bit pattern xκ ∈ X = {x(1), . . . ,x(Q)} of w∗ bits (i.e.,

X ⊆ {±1}w∗
), with w∗ ≥ ⌈log2 Q⌉ .

= w, is assigned to each quantizer level ūκ according to the index

assignment

Γ : U → F
w∗

2

ū(i) 7→ Γ(ū(i)) = x(i)

with F2 = {0, 1}.

The single bits of a bit pattern xκ are indicated by xκ(m), m ∈ {1, . . . , w∗}. If w∗ > log2 Q, the index

assignment Γ is called redundant index assignment [CAV06] and can be considered to be the composite

function Γ = ΓR ◦ ΓNB (i.e., Γ(ū) = (ΓR ◦ ΓNB)(ū) = ΓR(ΓNB(ū))). The function ΓNB performs a non-

redundant natural binary index assignment, i.e., the binary representation of the codebook index of ū is

assigned to ΓNB(ū). The function ΓR, which is the redundancy introducing part, can be regarded as being

a (linear or non-linear) block code of rate rIA = w/w∗. The concept of non-linear block codes employed

as redundant index assignments has been successfully utilized in, e.g., [HV05]. After index assignment,

KS bit patterns are grouped to a frame of bit patterns x = (x1, . . . ,xKS
) consisting of KS · w∗ bits. The

frame x of bits is then re-arranged by a bit interleaver π in a deterministic, pseudo-random like manner.

The interleaved frame with KS · w∗ bits is denoted as x̆.

For channel encoding of a frame x̆, we use a convolutional code of constraint length J +1 and of rate rC.

In general, any channel code can be used as long as the respective decoder is able to provide the required
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û

x x̆ū
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Soft Decision Source Decoding (SDSD)

Figure 3.1: Baseband model of the utilized ISCD system
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extrinsic reliabilities. In this paper, we restrict ourselves to rate rC = 1, recursive, non-systematic

convolutional codes as it has been shown [KHC06] that the inner code of a serially concatenated system

should be recursive in order to be capacity achieving. For the termination of the code, J tail bits are

appended to x̆. The encoded frame of length KS · w∗ + J is denoted by y. The bits yk of y are indexed

by k ∈ {1, . . . , KS · w∗ + J}. Prior to transmission over the channel, the encoded bits yk are mapped

to bipolar values ÿk forming a sequence ÿ ∈ {±1}KS ·w
∗+J . We only consider BPSK modulation in

this paper in order to demonstrate the concept, which can easily be extended to include higher order

modulation schemes [CBAV05], [CAV06] or channel equalization [SCV07]. Note that in Fig. 3.1 the

baseband model is considered.

On the channel, the modulation symbols ÿk (with symbol energy Es = 1) are subject to additive white

Gaussian noise (AWGN) with known variance σ2
n = N0/2.

The received symbols zk ∈ {±1} are transformed to L-values [HOP96] prior to being evaluated in a

Turbo process which exchanges extrinsic reliabilities between the channel decoder (CD) and the soft

decision source decoder (SDSD).

The channel decoder used in this paper is based on the LogMAP algorithm [BCJR74], [HOP96]. For the

derivations of the equations for computing the extrinsic probabilities of the SDSD, we refer the reader

to the literature, e.g., [Goe01], [FV01], [AV05], [ACS08]. In Section 3.2.2.1, we will briefly revise the

SDSD equations and give expressions in the logarithmic domain in order to evaluate the complexity and

the complexity savings of the proposed algorithms.

3.2 Complexity Reduction by Conditional Quantization

3.2.1 Conditional Scalar Quantization

In this section we present the concept of conditional scalar quantization, which enables a very efficient re-

alization (in terms of computational complexity) of the soft decision source decoder (SDSD) [SVAC08].

Although we present the concept for scalar quantization and a first order Markov model only, the exten-

sion to vector quantization as well as higher order Markov models is straightforward.

If U denotes the original quantizer codebook, let C = {C(1), . . . , C(Q)} denote the set of all quantization

cells with

C(q)={u : |u − ū(q)|< |u − ū(ℓ)|,∀ū(ℓ)∈U, ū(ℓ) 6= ū(q)}. (3.1)

Conditional quantization exploits the correlation between successive samples in such a way that the

quantization of the current value uκ depends on the previously quantized value ū
(i)
κ−1. For quantizing the

current sample uκ, the conditional quantizer only considers codebook entries ū(j) where the conditional

probability P (ū
(j)
κ |ū(i)

κ−1) is above a certain threshold T . We define a set of reduced codebooks Ured,i

with

Ured,i =
{

ū(j)
κ : P

(

ū(j)
κ |ū(i)

κ−1

)

> T ,∀ ū(j)
κ ∈ U

}

. (3.2)

The conditional quantizer uses the reduced codebook Ured,i to quantize the sample uκ if the previous

sample has been quantized to ū
(i)
κ−1. Let |Ured,i| denote the number of entries in the reduced codebook

Ured,i. The total number of allowed transitions ū
(i)
κ−1 → ū

(j)
κ is thus reduced from N ′ = Q2 to

N .
=

Q
∑

i=1

|Ured,i| . (3.3)

This (reduced) number of transitions is directly linked to the complexity of the source decoder as shall

be seen in Section 3.2.2. Let Xred,i denote the set of all bit patterns assigned to the reduced codebook
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Ured,i. Furthermore, we define

U
′
red,j

.
=
{

ū
(i)
κ−1 : ū(j)

κ ∈ Ured,i,∀ i ∈ {1, . . . , Q}
}

(3.4)

to be the set of all codebook entries ū
(i)
κ−1 that allow a transition ū

(i)
κ−1 → ū

(j)
κ . Again, X

′
red,j denotes the

set of assigned bit patterns to the entries of U
′
red,j .

Note that the utilization of conditional quantization also modifies the a priori knowledge of first order

which is exploited in the source decoder. We denote this modified conditional probability Pred(ū
(j)|ū(i))

with ū(j) ∈ Ured,i and ū(i) ∈ U. Again, for the conditional quantizer, quantization cells C(q)
red,i with

C(q)
red,i = {u : |u − ū(q)|< |u − ū(ℓ)|,∀ū(ℓ)∈Ured,i, ū

(ℓ) 6= ū(q)}

can be defined for q = 1, . . . , |Ured,i|. For a given (stationary) source with (two-dimensional) joint

probability function pU (uκ, uκ−1) = pU (uκ|uκ−1) · pU (uκ−1) the quantization noise amounts to

(e.g. [VM06], [JN84])

N =
∑

ū
(i)
κ−1∈U

∑

ū
(j)
κ ∈Ured,i

∫

C(i)

∫

C
(j)
red,i

(

ζ − ū(j)
κ

)2
pU (ζ, ν) dζ dν. (3.5)

The quantization noise is determined by considering all possible previous samples ū
(i)
κ−1 ∈ U and then

calculating the quantization noise amount of the pair (ū
(i)
κ−1, ū

(j)
κ ) with ū

(j)
κ ∈ Ured,i by solving the

double integral in (3.5). The total quantization noise is then obtained by summing over all combinations

of (ū
(i)
κ−1, ū

(j)
κ )

As an example, we assume that the source realizes a Gauss-Markov process of first order with correlation

ρ, zero mean and variance σ2
u = 1. The two-dimensional joint distribution of the source amounts to (e.g.,

[VM06])

pU (uκ, uκ−1) =
1

2π
√

1 − ρ2
· e−

u2
κ+u2

κ−1−2ρuκuκ−1

2(1−ρ2) . (3.6)

Figure 3.2 depicts the number of transitions N as a function of the threshold T for ρ ∈ {0.5; 0.7; 0.9}
and Q = 16 quantizer levels (top subplot) as well as for Q = 32 (bottom subplot). As it is expected

intuitively, a higher correlation ρ leads to a lower number of transitions N as transitions uκ−1 → uκ with

|uκ − uκ−1| ≫ 0 occur less frequently.

The most interesting question however is how much the signal quality is affected by conditional quanti-

zation. Therefore, (3.5) is evaluated for the same source and the signal-to-noise ratio after quantization

is determined as a function of the reduced number of transitions N . The original codebook U is assumed

to be the optimum Lloyd-Max codebook [JN84]. The results are depicted in Fig. 3.3, for Q = 16 (top

subplot) and Q = 32 (bottom subplot). It can be seen that for ρ ≥ 0.7 the number of transitions can be

halved (e.g., from Q2 = 1024 to N ≈ 500 for Q = 32) without affecting the SNR considerably.

Note that although we introduced the concept of conditional quantization for intra-frame correlation only,

it is also easily applicable to inter-frame correlation.

3.2.2 Complexity Considerations

In Section 3.2.2.1 we first revise the SDSD equations [AVS01], [Goe01], [ACS08] and then modify

the expressions such that the SDSD operates in the logarithmic domain in Section 3.2.2.2. The given

expressions are already modified in such a way that conditional quantization is incorporated. The full

expressions are needed in order to determine the complexity figures in Section 3.2.2.3.
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Figure 3.2: Number of transitions N as a function of the threshold T for Q = 16 (top) and Q = 32
(bottom).

3.2.2.1 Soft Decision Source Decoding (SDSD) for Conditional Quantization

The SDSD may be interpreted as a modification of the well-known BCJR algorithm [BCJR74], operating

on a fully developed trellis diagram. In this section, we assume that only intra-frame correlation is

exploited by the SDSD, the extension towards inter-frame correlation is straightforward by exchanging

the position indices κ with time indices t.

The input to the soft decision source decoder (SDSD) are the extrinsic L-values generated by the channel

decoder

L
[input]
SDSD(xκ(m)) = L

[ext]
CD (xκ(m))

= ln

(

P
[ext]
CD (xκ(m)=+1)

P
[ext]
CD (xκ(m)=−1)

)

. (3.7)

The first step of the SDSD consists in determining the factors θ(x
(j)
κ ) for each distinct bit pattern x

(j)
κ

with

θ(x(j)
κ ) = exp

(
w∗
∑

m=1

x
(j)
κ (m)

2
L

[input]
SDSD(xκ(m))

)

. (3.8)
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Note that x
(j)
κ (m) ∈ {±1}. The forward and backward recursion of the SDSD are given by

α(x(j)
κ ) = θ(x(j)

κ )
∑

x
(i)
κ−1∈X′

red,j

α(x
(i)
κ−1)Pred(x

(j)
κ |x(i)

κ−1) (3.9)

= θ(x(j)
κ ) · A(x(j)

κ ) (3.10)

β(x
(i)
κ−1) =

∑

x
(j)
κ ∈Xred,i

β(x(j)
κ )θ(x(j)

κ )Pred(x
(j)
κ |x(i)

κ−1) (3.11)

with the initialization α(x
(ℓ)
0 ) = P (x(ℓ)), β(x

(ℓ)
KS

) = 1, ∀ℓ ∈ {1, . . . , Q}, (see, e.g., [ACS08]). We

furthermore define A(x
(j)
κ )

.
=
∑

x
(i)
κ−1∈X′

red,j

α(x
(i)
κ−1)Pred(x

(j)
κ |x(i)

κ−1). Of course, the summations in

(3.9) and (3.11) only have to be evaluated for those pairs of (x
(i)
κ−1,x

(j)
κ ) with an existing transition

between the corresponding (ū
(i)
κ−1, ū

(j)
κ ) (i.e., P (ū

(j)
κ |ū(i)

κ−1) > T ). Further note that due to conditional

quantization the exploited a priori information changes. Therefore Pred(x
(j)
κ |x(i)

κ−1) has to be utilized

instead of P (x
(j)
κ |x(i)

κ−1) (see also Section 3.2.1).

The final step of the SDSD consists in determining the extrinsic information for each bit xκ(m) which is
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given by [AVS01] (in terms of L-values)

L
[ext]
SDSD(xκ(m)) = ln

Q∑

j=1

x
(j)
κ (m)=+1

β(x
(j)
κ )θ

[ext]
m (x

(j)
κ )A(x

(j)
κ )

Q∑

j=1

x
(j)
κ (m)=−1

β(x
(j)
κ )θ

[ext]
m (x

(j)
κ )A(x

(j)
κ )

(3.12)

with

θ[ext]
m (x(j)

κ ) = exp






w∗
∑

ℓ=1
ℓ6=m

x
(j)
κ (ℓ)

2
L

[input]
SDSD(xκ(ℓ))




 . (3.13)

3.2.2.2 SDSD in the Logarithmic Domain

In a practical implementation the translation of the BCJR algorithm to the logarithmic domain of-

fers several advantages such as, e.g., better numerical stability [RVH95]. In the following, we de-

rive the equations for the SDSD in the logarithmic domain. Therefore, we define θ̃(x
(j)
κ )

.
= ln θ(x

(j)
κ ),

α̃(x
(j)
κ )

.
= lnα(x

(j)
κ ), as well as β̃(x

(j)
κ )

.
= lnβ(x

(j)
κ ). With (3.8), the expression of θ̃(x

(j)
κ ) becomes

θ̃(x(j)
κ ) =

w∗
∑

m=1

1

2
x(j)

κ (m)L
[input]
SDSD(xκ(m)) . (3.14)

Taking the natural logarithm of (3.9) and using α̃(x
(j)
κ ) as well as θ̃(x

(j)
κ ) leads to (with P̃red(x

(j)
κ |x(i)

κ−1)
.
=

lnPred(x
(j)
κ |x(i)

κ−1)) [RVH95]

α̃(x(j)
κ ) = θ̃(x(j)

κ ) + ln






∑

x
(i)
κ−1∈X′

red,j

e
ln

“

α(x
(i)
κ−1)·Pred(x

(j)
κ |x

(i)
κ−1)

”






= θ̃(x(j)
κ )+ln






∑

x
(i)
κ−1∈X′

red,j

eα̃(x
(i)
κ−1)+P̃red(x

(j)
κ |x

(i)
κ−1)




 (3.15)

The expression ln
(
eδ1 + eδ2

)
which is part of (3.15) can be computed using the Jacobian loga-

rithm [RVH95]:

ln
(

eδ1 + eδ2
)

= max(δ1, δ2) + fc(|δ1 − δ2|)
.
= max*(δ1, δ2) (3.16)

with fc(ζ) = ln
(
1 + e−ζ

)
and ln

(
eδ1 + eδ2 + eδ3 + . . .

)
= max*(δ1, δ2, δ2, . . .) =

max*(δ1, max*(δ2, max*(δ3, . . .))). Furthermore, max*(δ1,−∞) = max*(−∞, δ1) = δ1. The

max* function can be efficiently implemented using, e.g., a lookup table.

Using the max* function, (3.15) can then be rewritten as

α̃(x(j)
κ ) = θ̃(x(j)

κ ) + max*

x
(i)
κ−1∈X′

red,j

(

α̃(x
(i)
κ−1)+P̃red(x

(j)
κ |x(i)

κ−1)
)

. (3.17)
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Similarly, the backward recursion (3.11) can be rewritten as

β̃(x
(i)
κ−1)= max*

x
(j)
κ ∈Xred,i

(

β̃(x(j)
κ )+θ̃(x(j)

κ )+P̃red(x
(j)
κ |x(i)

κ−1)
)

. (3.18)

The determination of the extrinsic information (3.12) can also be expressed using the max* operator

L
[ext]
SDSD(xκ(m))=

Q

max*

j=1

x
(j)
κ (m)=+1

(

α̃(x(j)
κ )+β̃(x(j)

κ )− 1

2
L

[input]
SDSD(xκ(m))

)

−
Q

max*

j=1

x
(j)
κ (m)=−1

(

α̃(x(j)
κ )+β̃(x(j)

κ )+
1

2
L

[input]
SDSD(xκ(m))

)

(3.19)

by consecutively exploiting the facts that ln θ
[ext]
m (x

(j)
κ ) = θ̃(x

(j)
κ ) − 1

2x
(j)
κ (m)L

[input]
SDSD(xκ(m)) (compare

(3.8) and (3.13)) and θ̃(x
(j)
κ ) + lnA(x

(j)
κ ) = α̃(x

(j)
κ ) (see (3.10)).

The last step of the SDSD consists in estimating the parameters û which is done here using an MMSE

estimation

û =

Q
∑

i=1

ū(i) exp
(

α̃(x(i)
κ ) + β̃(x(i)

κ ) + C̃1

)

(3.20)

with the constant C̃1 ∈ R which is chosen such that
∑Q

i=1 exp
(

α̃(x
(i)
κ ) + β̃(x

(i)
κ ) + C̃1

)
!
= 1. Note that

the parameter estimation only has to be performed once per frame and not for each iteration.

In some cases (e.g. if inter-frame correlation is exploited) only the forward recursion can be carried out

due to delay constraints. In this case β̃(x
(j)
κ ) is set to zero in (3.19) as the backward recursion (3.18)

does not need to be carried out. Equation (3.19) then reduces to

L
[ext]
SDSD(xκ(m))=

Q

max*

j=1

x
(j)
κ (m)=+1

(

α̃(x(j)
κ )− 1

2
L

[input]
SDSD(xκ(m))

)

−
Q

max*

j=1

x
(j)
κ (m)=−1

(

α̃(x(j)
κ )+

1

2
L

[input]
SDSD(xκ(m))

)

. (3.21)

3.2.2.3 Complexity of the SDSD

The evaluation of (3.14) requires Q · w∗ additions per parameter as the θ̃(x
(j)
κ ) have to be determined

for each possible bit pattern x
(j)
κ ∈ X. The factors 1

2L
[input]
SDSD(xκ(m)) can be calculated and stored (as

they are needed a second time in the run-time of the algorithm) using w∗ multiplications per parameter.

The multiplication by xκ(m) corresponds to a sign change only as xκ(m) ∈ {±1}. The forward and

backward recursions also have to be calculated for each x
(j)
κ ∈ X. In the case of conventional SDSD

(i.e., |Ured,i| = |Xred,i| = |U′
red,i| = |X′

red,i| = Q), the evaluation of (3.17) requires Q2 max* operations

as well as Q+Q2 additions per parameter while the evaluation of (3.18) requires Q2 max* operations and

2Q2 additions per parameter. If conditional quantization is utilized, the number of max* operations each

reduces to N and the number of additions to Q + N (forward recursion), respectively 2N (backward

recursion). Finally, the evaluation of (3.19) requires w∗Q max* operations as well as w∗(2Q + 1)
additions for the conventional as well as for the reduced-complexity SDSD.

Table 3.1 summarizes the number of operations required for both the standard SDSD and the complexity

reduced SDSD by conditional quantization. Both cases are considered: the forward/backward algorithm

and the forward-only variant which is used if inter-frame correlation is exploited. Note that we do not

consider the complexity of the parameter estimation as this step, which is only performed once per frame,

is required in any case. Thus the complexity figures given here only include the operations performed in

the block denoted “Utilization of a priori knowledge” in Fig. 3.1.
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Table 3.1: Operations per parameters needed by the SDSD

• Full algorithm:

Standard Conditional Quantization

max* 2Q2 + w∗Q 2N + w∗Q
ADD 3Q2 + (3w∗ + 1)Q + w∗ 3N + (3w∗ + 1)Q + w∗

MUL w∗ w∗

• Forward only algorithm:

Standard Conditional Quantization

max* Q2 + w∗Q N + w∗Q
ADD Q2 + (2w∗ + 1)Q + w∗ N + (2w∗ + 1)Q + w∗

MUL w∗ w∗

3.2.3 Simulation Results for Conditional Quantization

The capabilities of the proposed ISCD system with conditional quantization are demonstrated by two

simulation examples. The parameter signal-to-noise ratio (SNR) between the originally generated pa-

rameters u and the reconstructed estimated parameters û is used for quality evaluation. The parameter

SNR is plotted for different values of Eu/N0, with Eu denoting the energy per source parameter u
(Eu = w∗ · 1

rC
· Es). The source is realized by a Gauss-Markov (autoregressive) process with correla-

tion coefficient ρ fixed to ρ = 0.9. This auto-correlation value can be observed in typical speech and

audio codecs, e.g., for the scale factors in CELP codecs or MP3. The utilized channel code is a rate

rC = 1 recursive non-systematic convolutional code of constraint length J = 4 with generator poly-

nomial GC(D) =
(

1
1+D+D2+D3

)

. The non-iterative reference scheme uses optimized components for

non-iterative systems, i.e., a natural binary index assignment with w∗ = w = log2⌈Q⌉ and a rate rC = 1
2

recursive, systematic convolutional code of constraint length J = 4 with GC(D) =
(

1+D2+D3

1+D+D3

)

.

In a first experiment (denoted “experiment A”), we assume that the source exhibits intra-frame correla-

tion, i.e., the single elements uκ of ut are modelled by a 1st order Gauss-Markov process and a frame

consists of KS = 50000 parameters. The quantization is performed using a Q = 16 level Lloyd-Max

codebook U and the redundant index assignment ΓR consists of the (8, 4) block code with generator

matrix

GΓ
BC(8,4) =






1 0 0 0 1 1 1 0

0 1 0 0 1 1 0 1

0 0 1 0 1 0 1 1

0 0 0 1 0 1 1 1




 (3.22)

proposed in [CVA06]. This index assignment results in w∗ = 8 bit. The overall coding rate of the system

amounts to rIA ·rC = 1
2 . At the receiver, 15 iterations are carried out. The simulation results are depicted

in Fig. 3.4 for the standard SDSD with “regular” quantization as well as for the complexity-reduced

system with conditional quantization for T ∈ {0.01; 0.03; 0.05}. Note that the depicted non-iterative

scheme uses SDSD while today’s systems with hard-decision source decoding perform even worse. The

resulting number of transitions N as well as the number of required max* operations and additions are

summarized in Table 3.2. As predicted by (3.5), the maximum attainable parameter SNR is reduced due

to the influence of the conditional quantizer. Interestingly, the lower the number of transitions (i.e., for

higher values of T ), the more the waterfall region is moved towards lower channel qualities.

This behavior can be explained by an EXIT chart analysis [ten01]: The EXIT characteristics for the

conventional SDSD as well as for the complexity-reduced SDSD with conditional quantization are de-
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Table 3.2: Operations per parameter and iteration needed by the SDSD for experiment A (top) and

experiment B (bottom)

Q = 16 Standard Conditional

w∗ = 8 T = 0.01 T = 0.03 T = 0.05
Forw./Backw. N = 112 N = 90 N = 84

max* 640 352 308 296

ADD 1176 744 678 660

Q = 32 Standard Conditional

w∗ = 10 T = 0.005 T = 0.01 T = 0.03
Forw. only N = 408 N = 368 N = 284

max* 1344 728 688 604

ADD 1706 1090 1050 966
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Figure 3.4: Simulation results for experiment A and experiment B

picted in Fig. 3.5-a). The area ASDSD under the EXIT curve of the complexity-reduced SDSD is larger

than the area under the EXIT curve of the conventional SDSD. This leads to an earlier convergence (for

lower channel qualities) as the area underneath the EXIT characteristic is linked to the channel quality

where the waterfall region occurs [AKtB04]. The larger area is obvious as 1 −ASDSD is a function of

the conditional entropy H(ūκ|ūκ−1) [Tho07], which is reduced by the conditional quantizer. The reduc-

tion is caused by the fact that now Pred(x
(j)
κ |x(i)

κ−1) is exploited by the SDSD (instead of P (x
(j)
κ |x(i)

κ−1)).
Figure 3.5-b) depicts ASDSD as a function of the number of transitions N for the given setup.

In a second experiment (denoted “experiment B”) we assume that the source exhibits inter-frame corre-

lation, i.e., all the single elements uκ of ut are assumed to be statistically independent from each other.

The different samples uκ are correlated with their counterpart from previous frames. In this experiment, a
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Figure 3.5: EXIT chart analysis for Q = 16 and w∗ = 8 (index assignment generator matrix from

(3.22)) for conventional SDSD (“Standard”) and for conditional quantization SDSD with

T = 0.05, i.e., N = 84. Area under EXIT characteristic as a function of N .

frame consists of KS = 250 parameters. In order not to introduce any additional delay, the forward-only

SDSD has to be employed. The block coded index assignment ΓR utilized for experiment B corresponds

to a (31, 26) BCH code shortened to (10, 5) [LC03]. The generator matrix of the shortened systematic

code is given by

GΓ
BCH(10,5) =







1 0 0 0 0 1 0 0 1 0

0 1 0 0 0 0 1 0 0 1

0 0 1 0 0 1 0 1 1 0

0 0 0 1 0 0 1 0 1 1

0 0 0 0 1 1 0 1 1 1







. (3.23)

Note that we do not use a specially optimized index assignment but a standard small block code for

demonstrating the concept. One possibility to optimize the index assignments are irregular index assign-

ments introduced in [SVCS08].

At the receiver 20 iterations are carried out. The simulation results are depicted in Fig. 3.4 and the

number of utilized operations are summarized in Table 3.2. The results behave as expected: again a shift

of the waterfall region towards lower channel qualities is observed.

3.3 Complexity Reduction by Reduced Search Soft Decision Source De-

coding

3.3.1 M -SDSD

In channel decoding of convolutional codes, the M -algorithm [FA98] can be successfully applied in order

to reduce the complexity of the decoder. Another successful field of application is channel equalization

of ISI-channels [WM04].

The SDSD in fact is a variant of the BCJR algorithm [BCJR74] operating on a fully developed trellis

[ACS08]. Each state corresponds to a quantizer reproduction level (or a bit pattern, respectively). The

state transitions correspond to the possible transitions x
(i)
κ,t−1 → x

(j)
κ,t. At each trellis transition the M -

SDSD determines the M states with the highest probability and only considers these states for computing

the state transitions.

Equation (3.17) is performed for all states x
(j)
κ,t but only the M (saved) best states from the previous time

instant t − 1 are considered. Therefore, the complexity of (3.17) reduces to Q + MQ (with M < Q)

41



additions and MQ max* operations. After execution of the complexity-reduced version of (3.17), the

M best states have to be determined, i.e., the α̃(x
(j)
κ,t) with the largest value. This can be done using a

simple search with MQ−∑M
n=1 n = MQ− 1

2(M2 + M) compare operations (states that have already

been chosen don’t need to be compared anymore). For determining the extrinsic information, only the

M best α̃(xκ,t) are utilized, and therefore the complexity of (3.21) reduces to w∗(M + 1) additions and

w∗M max* operations. Note that we only consider the case where only the forward recursion is carried

out as inter-frame redundancy is exploited. This is the relevant case for FlexCode as the intra-frame

correlations are successfully removed by the (decorrelating) transform.

3.3.2 M-SDSD with Conditional Quantization

A further complexity reduction of the source decoder can be achieved if the transmitter can be modified.

In this case, the conventional scalar quantizer can be replaced by the conditional quantizer (CQ) intro-

duced in Section 3.2.1. The conditional quantizer has first been described in [SVAC08] and corresponds

to a quantizer with memory: depending on the previously quantized sample ū
(i)
κ,t−1 a reduced codebook

is utilized which considers only the entries which have a transition probability P (ū
(j)
κ,t|ū

(i)
κ,t−1) > T , with

T being the probability threshold of the quantizer. Depending on T , the number of transitions in the trel-

lis diagram is considerably reduced and thus also the number of operations. A drawback of conditional

quantization is however the reduced reconstruction quality in error-free channel conditions. For details,

see Section 3.2.1.

The complexity of the M-SDSD is more difficult to determine as the number of transitions per state

varies. Therefore, only a tight upper bound for the complexity can be given which however is needed

for a hardware realization guaranteeing a certain throughput. The conditional quantizer uses a reduced

codebook

Ured,i =
{

ū
(j)
κ,t : P

(

ū
(j)
κ,t|ū

(i)
κ,t−1

)

> T ,∀ ū
(j)
κ,t ∈ U

}

. (3.24)

depending on the previously quantized sample. The number of entries of |Ured,i| varies for different

values of i. Let SM denote the sum of the number of transitions of those M states (i.e., quantizer

reproduction levels) having the largest number of entries |Ured,i|. This is a worst case for the number of

transitions in the SDSD: the M states have been selected which lead to the highest number of transitions

that have to be calculated by the SDSD.

Figure 3.6 shows an example of the reduction of states and state transitions in the SDSD trellis diagram.

Figure 3.6-a) shows the fully developed trellis for Q = 16 quantization levels. In Fig. 3.6-b) the number

of states is reduced by the M -SDSD with M = 6. However, the number of state transitions (Q = 16)

per state is unchanged. This number can be reduced by applying conditional quantization leading to the

trellis in Fig. 3.6-c). Note that Fig. 3.6-b) and Fig. 3.6-c) only show snapshots. The M selected states

may vary for each trellis transition.

In the worst case, the complexity of (3.17) now reduces to Q + SM additions and SM max* opera-

tions. The complexity for determining the M best states remains the same as in the case of the M -

SDSD. Finally, the complexity of evaluating (3.21) by the conditional quantizer is not affected, therefore

w∗(M + 1) additions and w∗M max* operations are required.

The total number of operations for the three different algorithms (standard SDSD, M -SDSD and M -

SDSD with conditional quantization (CQ-M -SDSD) are summarized in Table 3.3.

3.3.3 Simulation Example

The capabilities of the complexity-reduced ISCD system are demonstrated by a simulation example.

The parameter signal-to-noise ratio (SNR) between the originally generated parameters u and the es-
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a) b) c)

Figure 3.6: Trellis diagrams exploited at the source decoder in (3.17) for Q = 16.

a) full trellis diagram

b) exemplarily trellis exploited at one stage of the M -algorithm with M = 6
c) if additionally conditional quantization is exploited with T = 10−2

Table 3.3: Operations per parameters needed by the different complexity-reduced SDSD variations

(forward-only algorithm)

ADD max* CMP

Standard Q2 + (2w∗ + 1)Q + w∗ Q2 + w∗Q
M -SDSD (w∗ + M + 1)Q + w∗(M + 1) M(Q + w∗) MQ − 1

2(M2 + M)
CQ-M -SDSD (upper bound) (w∗ + 1)Q + SM + w∗(M + 1) SM + w∗M MQ − 1

2(M2 + M)

timated parameters û is used for quality evaluation. The parameter SNR is plotted for different val-

ues of Es/N0. The source is realized by KS independent Gauss-Markov (autoregressive) processes

with correlation coefficient ρ fixed to ρ = 0.9. This auto-correlation value can be observed in typ-

ical speech and audio codecs, e.g., for the scale factors in CELP codecs or MP3. The quantization

is performed using a Q = 16 level Lloyd-Max codebook U. The utilized block coded index as-

signment ΓR is a repetition code [CSVA08] (w∗ = 8). The utilized channel code is a rate rC = 1
recursive non-systematic convolutional code of constraint length J = 4 with generator polynomial

GC(D) =
(

1
1+D+D2+D3

)

. The non-iterative reference scheme as well as the hard-output channel de-

coding reference uses optimized components for non-iterative systems, i.e., a natural binary index assign-

ment with w∗ = log2⌈Q⌉ = 4 and a rate rC = 1
2 recursive, systematic convolutional code of constraint

length J = 4 with GC(D) =
(

1, 1+D2+D3

1+D+D3

)

.

We assume that the source exhibits inter-frame correlation, i.e., all the single elements uκ of ut are

statistically independent from each other. The different samples uκ are correlated with their counterpart

from previous frames. A frame consists of KS = 250 parameters. In order not to introduce any additional

delay, the forward-only SDSD as introduced in Section 3.2.2 is employed.

The simulation results are depicted in Fig. 3.7. At the receiver 15 iterations have been carried out in

a first experiment. It can be seen that the utilization of the M -SDSD with M = 6 does not cause

any noteworthy performance losses for good channel conditions (Es/N0 > −4 dB). The application of

conditional quantization further reduces the complexity at the expense of a slightly decreased parameter

SNR in good channel conditions [SVAC08]. The fact that the CQ has a better performance in the waterfall

region is explained in [SVAC08]. With T = 10−2 and M = 6, the factor SM can be determined to

SM = 50, by considering the 6 codebooks Ured,i with the highest number of entries. The complexity

per parameter of the three different utilized SDSD algorithms with the configuration of the simulation
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Figure 3.7: Parameter SNR performance for different reduced-search source decoders

(M = 6, T = 10−2)

ADD max* CMP

Standard 536 384

M -SDSD 296 144 75

CQ-M -SDSD (upper bound) 218 98 75

Table 3.4: Number of operations necessary for the different algorithms for complexity reduction

example are summarized in Table 3.4.

With w∗ = 8 and rC = 1, the LogMAP decoder [HOP96], [RVH95] requires approximately 656 ad-

ditions and 256 max* operations per parameter. If we assume in a first approximation that all three

operations (additions, max*, and compares) require the same amount of computing power in a hardware

realization, the total number of operations amounts to 19545 per parameter if 15 iterations are utilized

and the M -SDSD with conditional quantization (T = 10−2) is utilized. If the full SDSD is employed,

only 10 iterations can be carried out if the above number of operations (19545) per parameter shall be

fixed as an upper bound. The simulation result for 10 iterations is also given in Fig. 3.7. It can be seen

that it is advantageous to utilize a complexity-reduced source decoder and a higher number of iterations

if the total number of operations to be performed is limited.
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Chapter 4

Irregular Index Assignments for Iterative

Source-Channel Decoding and Their

Applications

In this Chapter, the concept of irregular index assignments [Fle08c], [SVCS08] is recapitulated and some

advancements are presented. For instance it is shown how the ISCD system with irregular index assign-

ments can be used to achieve Unequal Error Protection (UEP), how near-capacity channel coding of a

generic bit stream can be performed using the ISCD system and how error-resilient source compression

can be realized.

In Section 4.1 the abstract system model utilized throughout this Chapter is presented, while in Sec-

tion 4.2 the concept of irregular index assignments is recapitulated. A simulation example and the UEP

property are given in Section 4.3. The utilization of the ISCD system for encoding a generic bit stream is

presented in Section 4.4 while finally it is shown in Section 4.5 how the ISCD system can be utilized for

realizing error-resilient near-lossless source compression by a simple modification of the optimization

criterion.

4.1 System Model

In Fig. 4.1 the baseband model of the considered ISCD system is depicted. At time instant t a source

encoder generates a frame ut = (u1,t, . . . , uKS ,t) of KS unquantized source codec parameters uκ with

κ ∈ {1, . . . , KS} denoting the position in the frame. Each value uκ is individually mapped to a quantizer

reproduction level ūκ, with ūκ ∈ U = {ū(1), . . . , ū(Q)}. The set U denotes the quantizer codebook with

a total number of |U| = Q codebook entries. In this paper, we restrict Q to take only values which

are powers of 2, i.e., Q = 2w, with w ∈ N \ {0}. A unique bit pattern xκ ∈ Xκ = {x(1)
κ , . . . ,x

(Q)
κ } of

w∗
κ bits (i.e., Xκ ⊆ F

w∗
κ

2 , F = {0; 1}), with w∗
κ ≥ log2 Q = w, is assigned to each quantizer level ūκ

according to the index assignment Γκ(ū(i)) = x(i), i = 1, . . . , Q. Note that the index assignment can

differ from parameter to parameter. For notational convenience we omit the time index t if the meaning

of the equation is non-ambiguous.

The single bits of a bit pattern xκ are indicated by xκ(m), m ∈ {1, . . . , w∗
κ}. If w∗

κ > log2 Q = w, the

index assignment Γκ is called redundant index assignment as it introduces redundancy: More bits than

actually necessary are spent to represent a quantizer reproduction level. The index assignment can be

considered to be the composite function Γκ(ū) = ΓR
κ(ΓNR(ū)). First, the function ΓNR performs a non-

redundant mapping of the Q quantizer reproduction levels to patterns consisting of w bits. Second, the

function ΓR
κ can be regarded as a (potentially non-linear) block code of rate rIA

κ = (log2 Q)/w∗
κ = w/w∗

κ.
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Figure 4.1: Baseband model of the utilized ISCD system

The concept of non-linear block codes employed as redundant index assignments has been success-

fully utilized for the robust transmission of source parameters in, e.g., [CVA06]. After the index

assignment, KS bit patterns are grouped to a frame of bit patterns x = (x1, . . . ,xKS
) consisting of

NX
.
=
∑KS

κ′=1 w∗
κ′

.
= KS · w∗ bits. The overall rate of the index assignment is thus

rIA .
=

KS · w
KS∑

κ=1
w∗

κ

=
w

w∗ , (4.1)

with w∗ the average number of bits per parameter after index assignment. The frame x of bits is re-

arranged by a bit interleaver π in a deterministic, pseudo-random like manner. The interleaved frame

with KS · w∗ bits is denoted as x̆.

For channel encoding of a frame x̆, we use a recursive convolutional code of memory J and of rate rCC.

In general, any channel code can be used as long as the respective decoder is able to provide the required

extrinsic reliabilities. For the termination of the convolutional code, J tail bits are appended to x̆. The

encoded frame of length NY
.
= 1

rCC (KS · w∗ + J) is denoted by y. The bits yk of y are indexed by

k ∈ {1, . . . , NY }.

Prior to transmission over the channel, the encoded bits yk are mapped to bipolar values ÿk forming a

sequence ÿ ∈ {±1}NY . On the channel, the modulation symbols ÿk (with symbol energy Es = 1) are

subject to additive white Gaussian noise (AWGN) with known power spectral density σ2
n = N0/2.

The received symbols zk are transformed to L-values [HOP96] prior to being evaluated in a Turbo pro-

cess which exchanges extrinsic reliabilities between channel decoder (CD) and soft decision source de-

coder (SDSD). The channel decoder used in this paper is based on the MAP algorithm [BCJR74]. For

the equations of the SDSD, we refer to the literature, e.g., [ACS08] and to Section 3.2.2.2.

4.2 Irregular Index Assignments

In this Section, the concept of irregular index assignments is briefly revised, followed by a design guide-

line already introduced in [Fle08c]. According to [AKtB04], a necessary condition for a serially con-

catenated system to be capacity achieving is an inner component with code rate rInner ≥ 1. For the setup
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introduced in Section 4.1, this means that the channel code should be of rate rCC ≥ 1. For a given

channel code, the goal is to find a perfectly matching outer component (source code) to the channel code.

This task can be solved for example by the concept of irregular codes [TH02a]. Irregular codes, origi-

nally proposed for convolutional codes, use several component codes of different rates in one block (e.g.,

by changing the puncturing rule) to obtain an overall rate rOuter outer code. With this concept, capacity

achieving codes can be easily found. Furthermore, it becomes easily possible to adapt the code and the

rates to changing transmission parameters. This is essentially important in flexible source and channel

coders that can adapt on the fly to varying channel and network conditions.

The concept of irregular codes is based on the fact that the EXIT characteristic of the resulting code

corresponds to the weighted sum of the component codes’ characteristics (where the weights correspond

to the fractions of code bits being encoded by the respective component code). An optimization algorithm

that searches for optimum weights in order to get an (almost) perfectly matching characteristic can be

formulated [TH02a].

Irregular Index Assignments (IIA), introduced in [SVCS08], are an extension of the irregular codes’

concept. As stated in Section 4.1, the index assignment for the parameter uκ comprises a block code ΓR
κ

of rate rIA
κ = (log2 Q)/w∗

κ = w/w∗
κ. Instead of using the same amount of bit redundancy w∗

κ = w∗ for

each parameter in order to achieve an overall rate w/w∗ outer encoding, we use the concept of irregular

codes and vary w∗
κ for each parameter while keeping w∗ constant. This allows us to optimize the index

assignments and to get an SDSD EXIT characteristic which matches the channel decoder’s characteristic

considerably well.

In [TSV08] the concept of irregular codes has been applied to the inner channel code while utilizing

a constant redundant index assignment: This allows us to optimize the inner code to varying channel

conditions and transmission scenarios. In this contribution however, we assume that both are constant.

In order to account for changing source statistics, we adapt the outer code (i.e., the index assignment) to

the (fixed) channel code.

In the following, we will briefly revise the optimization problem originally introduced by Tüchler

[TH02a, Tüc04] and then present several modifications. The EXIT characteristic of a specific index

assignment ΓR
ℓ shall be denoted by CSDSD,ℓ. The vector cℓ

.
= (cℓ,1, . . . , cℓ,P )T contains P sample points

of the characteristic CSDSD,ℓ. The matrix C
.
= (c1, . . . , cL) contains all the characteristics. Let d be a

vector consisting of P sample points of the inverse channel code EXIT characteristic C−1
CC , measured

at the channel quality for which the system is optimized. This channel quality usually is set to be

the Shannon limit or slightly above it, such that the optimized system is capacity-achieving. The L
weighting factors are grouped into the vector g. The rates of the different index assignments are denoted

by rIA
ℓ , 1 ≤ ℓ ≤ L, which can be grouped to the vector r

.
= (rIA

1 , rIA
2 , . . . , rIA

L )T . The overall target rate

of the index assignment is denoted by rIA.

Three constraints have to be fulfilled:

1. The sum of the L weighting factors gℓ has to be equal 1:

L∑

ℓ=1

gℓ = 1. (4.2)

2. The overall rate rIA is the combination of all weighted rates of the subcodes:

L∑

ℓ=1

rℓ · gℓ = rIA. (4.3)

3. All weighting factors represent a part of the signal, so have to be between 0 and 1:

0 ≤ gℓ ≤ 1, ∀ℓ ∈ {1, . . . , L} (4.4)
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With (4.4) follows (in matrix notation)

A · g =

(
IL

−IL

)

· g =













1
. . .

1
−1

. . .

−1













·






g1
...

gL




 ≥













0
...

0
−1

...

−1













=

(
0L

−1L

)

= b (4.5)

with A =

(
IL

−IL

)

and b =

(
0L

−1L

)

, where 1L is a column vector of the length L filled with ones, 0L a

column vector of length L filled with zeros and IL die identity matrix of size L × L. (4.2) and (4.3) can

be combined

Aeq · g =

(
1T

L

rT

)

· g =

(
1 · · · 1
r1 · · · rL

)

·






g1
...

gL




 =

(
1

rIA

)

= beq (4.6)

with Aeq =

(
1T

L

rT

)

and beq =

(
1

rIA

)

.

Finally, the optimized curve shall not intersect the inverse characteristic of the channel decoder and an

open decoding tunnel has to be present, i.e., the inner and outer decoder characteristics are not allowed

to cross because otherwise a error free decoding would not be possible. To achieve this the matrix

C multiplied with the L weighting factors g = (g1, . . . , gL) has to be bigger than the inverse EXIT-

characteristic C−1
CD of the channel decoder d. The matrix C contains the vectors cℓ = (cℓ,1, . . . , cℓ,P )T

including the P sample points of the EXIT-characteristics CSDSD,ℓ of the L selectable index assignments.

Hence this leads to the equation

C · g =
(
c1 · · · cL

)
· g =






c1,1 · · · cL,1
...

. . .
...

c1,P · · · cL,P




 ·






g1
...

gL




 >






d1
...

dP




 = d. (4.7)

All the constraints can thus be grouped to

C · g > d (4.8)

A · g ≥ b (4.9)

Aeq · g = beq (4.10)

with

Aeq =

(
1T

L

rT

)

, beq =

(
1

rIA

)

(4.11)

A =

(
IL

−IL

)

, b =

(
0L

−1L

)

(4.12)

and 1L denoting the length L all-ones column vector, 0L the length L all-zeros column vector and IL

the L × L identity matrix. Finding the optimal g is a linear least-squares optimization problem

gopt = arg min
g

‖Cg − d‖2 (4.13)
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subject to (4.8), (4.9) and (4.10). The optimization problem can be solved using numerical algorithms

(e.g., [GMW81, TH02a]).

The optimization determines the weights gℓ which are the weighting factors of the EXIT characteristics.

They also determine the fraction of bits gℓNX to be assigned to each index assignment. From these

fractions gℓNX = gℓKSw∗ the corresponding KS,ℓ (number of source parameters assigned to each

index assignment) can be determined by

KS,ℓ =rnd

[

gℓKSw∗ rIA
ℓ

w

]

=rnd

[

gℓKS
rIA
ℓ

rIA

]

, (4.14)

with rnd being an appropriate rounding operation such that
∑

∀ℓ KS,ℓ = KS .

4.2.1 Design Guideline for Irregular Index Assignments

In the following, we present a simple design guideline in order to generate redundant index assignments

with rates rIA
κ = w/w∗

κ, w∗
κ ∈ {w + 1, . . . , w∗

max} needed for the optimization of the irregular index

assignments. The guideline starts with an (almost) arbitrary generator matrix G = (gi,j)w×w∗
max

of size

dimG = w × w∗
max and with elements gi,j ∈ F2. A generator matrix Gw∗ for a rate rIA

κ = w/w∗
κ index

assignment is then obtained by

Gw∗ = G ·
(

Iw∗

0′

)

(4.15)

with 0′ denoting here the (w∗
max − w∗) × w∗ all-zero matrix. Equation (4.15) means that Gw∗ consists

of the first w∗ columns of G. The only conditions we fix for G are:

a) G is a generator matrix for a systematic linear block code, i.e., G can be written as

G =

(

Iw P

)

. (4.16)

b) The block code generated by Gw+1 has a minimum Hamming distance dmin(Gw+1) ≥ 2.

The second condition is necessary for the EXIT characteristic to reach the (1, 1) point [CVA06],

[KGM06], [PYH07] and is accomplished if Gw+1 realizes a parity check code, i.e., Gw+1 = (Iw 1w).

The generation of the (irregular) index assignments using a generator matrix as presented in this section

enables the receiver to apply a simple yet effective stopping criterion. For details, we refer to [SVCS08].

4.3 Irregular Index Assignment Performance and Unequal Error Protec-

tion Properties

In the previous Section, we have given the theoretical background of the concept of irregular index as-

signments. In this Section, we present a simulation example and show by this example that the concept of

irregular index assignments inherently possesses the ability to perform unequal error protection (UEP).

We furthermore show how to take account of this ability by respecting the source properties and give a

modification of the optimization rule.
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4.3.1 Simulation Example

We illustrate the generation of irregular index assignments by means of an example, similar to the one

given in [SVCS08]. Instead of using any specific speech, audio, or video encoder, we consider blocks

consisting of KS = 250 statistically independent source parameters modelled by KS independent 1st

order Gauss-Markov processes with auto-correlation ρ = 0.9. The source exhibits inter-frame correla-

tion which is exploited at the receiver using the SDSD described in, e.g., in Section 3.2.2, [Fle08c],

or [ACS08], with no backward recursion being carried out. The source parameters are quantized us-

ing a Q = |U| = 16 level Lloyd-Max quantizer codebook (see for instance [JN84, VM06]), i.e., w = 4.

Furthermore, we assume that the overall coding rate of the index assignment shall be of rate rIA = 1
2 ,

which gives an average number of w∗ = 8 bits per source parameter. The channel code is a memory

J = 3, rate 1 recursive convolutional code with generator polynomials GCC(D) =
(

1
1+D+D2+D3

)

. An

exemplary generator matrix G for w = 4 and w∗
max = 15, fulfilling the conditions a) and b) introduced

in Section 4.2.1 and generating redundant index assignments with rates 4/5, 4/6, . . . , 4/15 could be

G =







1 0 0 0 1 1 1 1 0 1 1 1 0 0 0
0 1 0 0 1 1 1 0 1 0 0 1 1 1 0
0 0 1 0 1 1 0 1 1 0 1 0 1 0 1
0 0 0 1 1 0 1 1 1 1 0 0 0 1 1







. (4.17)

The generator matrix G is found by taking all possible permutations of (1, 0, 0, 0)T , (1, 1, 0, 0)T ,

(1, 1, 1, 0)T and (1, 1, 1, 1)T and arranging them as the columns of G such that the conditions for G

are fulfilled. No special code is searched and optimized as the good properties of the overall system are

determined by the irregularity of the index assignment.

The index assignments generated by applying (4.15) to the generator matrix (4.17) for realizing the

redundant part of the index assignment ΓR
κ are denoted by BC

Q
w∗ .

Example: The block code index assignment BC16
6 is given by BC16

6 = {x|x = Γ(ū), ū =
ū(1), . . . , ū(Q)}= {0, 6, 13, 15, 23, 25, 30, 36, 43, 45, 50, 56, 60, 66, 73, 75} in octal representation

with the least significant bit corresponding to x(w∗). A common assumption is that the non-redundant

part of the index assignment ΓNR performs a natural binary representation of the codebook indices,

i.e., ΓNR(ū(q)) = (q − 1)2, with (q − 1)2 denoting the binary representation of q − 1. For instance, to

the quantizer reproduction level ū(6), the binary representation x′ = ΓNR(ū(6)) = (5)2 = (0101)2 is

assigned, leading to

x = x′ · G6 = (0101)







1 0 0 0 1 1
0 1 0 0 1 1
0 0 1 0 1 1
0 0 0 1 1 0







=(010101)2 =(25)8

after the second step ΓR
κ of the redundant index assignment Γκ(ū(6)) = ΓR

κ(ΓNR(ū(6))).
For an overall rate-1

2 transmission with the given parameters, it can be observed that a minimum channel

quality of Es/N0 ≈ −4.3 dB is necessary to reach a reconstruction SNR of the decoded parameters of

≈ 20 dB. This minimum channel quality can be found using the OPTA limit [CSVA06] with an AWGN

channel and ρ = 0.9. The EXIT characteristics of the channel decoder CCD and the characteristics of the

different index assignments BC16
w∗ are illustrated in Fig. 4.2. It can be seen that the characteristic CSDSD,4

of the regular index assignment BC16
8 , meeting the rate requirements rIA = 1

2 , has an intersection with the

channel decoder characteristic, resulting in a decoder failure at the given minimum channel quality. The

optimization of the irregular index assignment leads to the characteristic CIIA
SDSD, matching considerably

well the channel decoder characteristic with an open decoding tunnel.
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Figure 4.2: EXIT chart analysis of the irregular index assignments at Es/N0 = −4.3 dB

Rate rIA
ℓ Γℓ gℓ gℓKSw∗ KS,ℓ

4/5 BC16
5 0.375 750 K

(4/5)
S = 150

4/6 BC16
6 0.045 90 K

(4/6)
S = 15

4/10 BC16
10 0.115 230 K

(4/10)
S = 23

4/15 BC16
15 0.465 930 K

(4/15)
S = 62

rIA = 1
2

∑
= 1

∑
= KSw∗

∑
= KS

= 2000 = 250

Table 4.1: Result of the irregular index assignment example

The results of the optimization and the calculated portions KS,ℓ, which have been determined using

(4.14), are summarized in Table 4.1. The outcome of the algorithm is that not all index assignments have

to be used in order to generate a good matching irregular index assignment but only four of them.

Note that the concept of irregular index assignments introduces no noteworthy additional computational

complexity at the receiver, which mainly depends on the number of quantization levels per parameter

(which has been fixed to Q = 2w in this contribution).

The capabilities of the proposed ISCD system with irregular index assignments scheme are demonstrated

by a simulation example. The parameter signal-to-noise ratio (SNR) between the originally generated

parameters u and the reconstructed estimated parameters û is used for quality evaluation. The MMSE

estimation rule given in (3.20) is utilized. The simulation results are depicted in Fig. 4.3. Two con-

ventional non-iterative transmission systems are also given as a reference. In both reference systems,

the channel code is a rate rCC = 1
2 recursive systematic convolutional code with generator polynomial

GCC
RSC(D) =

(

1, 1+D+D3

1+D+D2+D3

)

. The code can be decoded using a (soft-input, hard-output) Viterbi de-

coder: Then the source symbols û are reconstructed using a simple table lookup (Reference A). On the

other hand, the code can also be decoded using a LogMAP decoder followed by a soft decision source

decoder (Reference B). In both cases, a natural binary index assignment is utilized. No additional
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Figure 4.3: Parameter SNR and mean number of iterations for a system with regular and irregular index

assignments

redundancy is introduced by the index assignment.

While the ISCD system utilizing the regular index assignment BC16
8 achieves considerable gains com-

pared to the references and is already able to closely reach the theoretical OPTA limit, additional gains

of ≈ 0.7 dB can be obtained by using the irregular index assignment. If the sphere packing bound (SPB)

is used to approximate the behavior for transmissions with a finite block length, the proposed system can

reach the theoretical OPTA-SPB limit [CSVA06] in a wider range of channel conditions.

The maximum number of iterations has been fixed to 50 for both systems. The average number of

utilized iterations at the receiver is depicted in the lower part of Fig. 4.3. The number of iterations

rapidly decreases in the waterfall region if the regular index assignment is used. The system employing

irregular index assignments (IIA) needs more iterations due to the narrow decoding tunnel. As can be

seen in Fig. 4.3, less than 50 iteration would be enough for the system using the regular index assignment

because of the early intersection of the EXIT characteristics and the large open tunnel which can be

observed in good channel conditions. However, the utilized stopping criterion limits the number of

iterations to the necessary minimum. During bad channel conditions, the proposed stopping criterion is

not useful as the parity equations are never fulfilled. In this case, early-termination mechanisms, like the

ones proposed in [LW07], could be used. If the channel quality is known simultaneously at the receiver

and at the transmitter, it can be beneficial to change the index assignment at some point in order to only

use the irregular index assignments if a gain in terms of reconstruction quality can be achieved (i.e., range

of improvement for −4.7 dB < Es/N0 < −3.3 dB).
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4.3.2 Unequal Error Protection

In most modern speech, audio, and video codecs, some parameters are more important than others. Errors

in the less important parameters can easier be tolerated because the adverse effects on the quality of the

reconstructed audiovisual signal are less annoying. Therefore, a higher symbol error rate, or a lower

parameter SNR respectively, can be allowed for those parameters. On the other hand, more important

parameters, like, e.g., gain factors need to be better protected. This leads to Unequal Error Protection

(UEP), where several types of parameters get different levels of error protection.

The proposed ISCD system with irregular index assignments directly incorporates unequal error protec-

tion. It can be observed that the parameters which are assigned to the high-rate index assignments have a

slightly lower parameter SNR after decoding than those parameters which are assigned a low-rate index

assignment. This is visualized in Fig. 4.4 where the parameter SNR after decoding has been measured for

each of the 250 parameters in one block in the simulation example described in Section 4.3.1 at channel

qualities of Es/N0 = −4.25 dB and Es/N0 = −4 dB (see Fig. 4.3). The utilized irregular index assign-

ment is summarized in Table 4.1. The allocation of parameters to index assignments has been defined as

follows: The first parameters of the block are encoded using the high-rate index assignments (rates 4/5,

4/6, . . .) and the parameters towards the end of the block are encoded using the low-rate index assign-

ments. It can be seen that the first KS,1 + KS,2 = 165 parameters encoded with rate 4/5 and 4/6 index

assignment show a lower reconstruction parameter SNR than the KS,3 = 23 parameters encoded using

the rate 4/10 index assignment. The KS,4 = 62 parameters encoded using the rate 4/15 index assign-

ment show the best reconstruction quality. Note that this behavior only occurs in the waterfall region.

This region is quite narrow in the simulation example in Section 4.3.1 (−4.5 dB ≤ Es/N0 ≤ 3.7 dB),

however, if less iterations are performed at the receiver (for instance because of complexity constraints),

the waterfall region can be wider. For good channel qualities (Es/N0 > 3.7 dB in the above example),

all parameters can be assumed to be perfectly decoded.

During system design, it is therefore advantageous to employ the low-rate index assignments for param-

eters that are sensitive to transmission errors. On the other hand the high-rate index assignments can be

utilized for those parameter where decoding failures result in a low subjective quality degradation in the
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Figure 4.4: Unequal error protection capabilities for Es/N0 = −4.25 dB and Es/N0 = −4 dB
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reconstructed audio or video signal.

If the source properties are known, the optimization of the irregular index assignments can also be mod-

ified such that the unequal error protection requirements of the source are incorporated into the opti-

mization as additional constraints. We illustrate the procedure by a small example. Suppose that only a

fraction fL of the source parameters are less sensitive to transmission errors. Therefore, at most fLKS

parameters must be encoded using the high-rate index assignments: For instance, if we fix the condition

that less than fLKS parameters are encoded with the index assignments of rates 4/5 and 4/6 we get

KS,1 + KS,2 ≤ fLKS . (4.18)

If the rnd operation in (4.14) is neglected, substituting the different KS,ℓ in (4.18) by their expressions

given in (4.14), we get

g1r
IA
1 + g2r

IA
2 ≤ fLrIA . (4.19)

On the other hand, if the source shows the property that at least fHKS parameters need high error

protection and shall be encoded using the 3 lowest-rate index assignments, we get

KS,L−2 + KS,L−1 + KS,L ≥ fHKS (4.20)

which transforms to

gL−2r
IA
L−2 + gL−1r

IA
L−1 + gLrIA

L ≥ fHrIA . (4.21)

The constraint Ag ≥ b (see Equation (4.9)) of the least squares optimization problem (4.13) can now be

modified in order to incorporate (4.19) and (4.21)

A =







IL

−IL

−(1 1 0 · · · 0) ⊙ rT

(0 · · · 0 1 1 1) ⊙ rT







, b =







0L

−1L

−fL · rIA

fH · rIA







(4.22)

with ⊙ denoting the element-wise multiplication of two vectors.

This illustrative example has shown how to incorporate properties of the source into the optimization

procedure for irregular index assignments. In this example, unequal error protection has been realized by

defining the maximum number of parameters that have weak error protection and a minimum number of

parameters having strong error protection. Of course, more different levels of protection can be defined

leading to more additional inequality constraints. However, the more constraints are defined, the more

difficult it becomes to find a solution to the optimization problem (4.13). Also note that unequal error

protection only occurs in the waterfall region (−4.5 dB < Es/N0 < −3.7 dB in the simulation example

in Fig. 4.3).

4.4 Channel Coding of a Generic Bit Stream Using Iterative Source-

Channel Decoding with Irregular Index Assignments

During the development of the FlexCode channel coder, it has been found that the developed ISCD ap-

proach cannot be used if arithmetic coding is used as there is no direct relationship between source codec

parameters (i.e., transform coefficients) and bit stream. In order to utilize the ISCD approach also in this

case and to prevent the development of a dedicated channel coding concept for the arithmetically coded

bit stream, it has been decided to modify the ISCD approach for channel coding generic bit streams.

The modified block diagram is given in Fig. 4.5. Instead of source codec parameters u, now a bit

stream v is to be encoded and transmitted. Therefore, the quantizer in Fig. 4.1 of the ISCD system
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model is replaced by a bit stream partitioner which demultiplexes the bit stream (which is the output

of the arithmetic encoder). Then each individual group of bits is encoded by a small (n, k) block code

(generator matrix with a small number of rows, i.e. k < 10). After demultiplexing, the collected block

coded groups are interleaved and encoded by a (rate-1) convolutional code prior to transmission over the

channel.

The receiver remains unchanged and consists of the serial concatenation of a convolutional decoder

(which is a MAP decoder [BCJR74], [RVH95]) and a Soft Decision Source Decoder (SDSD). As no a

priori knowledge on the different groups of bits is generally available, the SDSD does not exploit any

redundancies and therefore reduces to a MAP block code decoder. After performing a fixed (or variable)

number of iterations, the MAP input bit group is determined and by concatenation an estimated bit stream

is generated again which can then be arithmetically decoded.

To reach the Shannon limit for a given channel and a serial Turbo concatenation it is necessary to fit the

EXIT-characteristic of the inner channel decoder to an outer component. This can e.g. be achieved with

irregular codes using different codes with possibly different rates in one frame. The principle of irregular

block codes is based on the feature that a EXIT-characteristics can be determined by the weighted sum

of characteristics of all part codes within one frame. Using this criterion it is possible to perfectly fit an

outer component to an inner one [Tüc04], [TH02a] and therefore adapt the code to the channel properties.

This way offers a great flexibility. This is basically the same concept as the irregular index assignments

introduced earlier in this chapter and the same optimization procedures (given in Section 4.2) can be

applied.

This scheme corresponds to a serial Turbo scheme consisting of the concatenation of an outer block code

and an inner convolutional code. The block code has the generator matrix

G =













G1

G2

. . .

. . .

GΥ−1

GΥ













if Υ different small blocks are utilized. The overall EXIT characteristic of the outer component consisting
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of this block code is given by the weighted superposition of the EXIT characteristic of the Υ different

subcodes. This can be interpreted again as a problem of irregular codes and the previously introduced

optimization procedure can be applied.

Example Assume following generator matrix:

G =




















G1

. . .

G1

G2

. . .

G2

G3

. . .

G3




















with

G1 =

(
1 0 1
0 1 1

)

,

G2 =

(
1 0 1 1 1
0 1 1 1 1

)

,

G3 =





1 0 0 1 1
0 1 0 1 1
0 0 1 1 1



 .

To achieve a encoding rate r = 1/2, one possibility would be to weight g1 = 1/4 of the overall coded

bits with G1, g2 = 7/12 with G2 and g3 = 1/6 with G3, because then the constraint (4.2) for irregular

index assignments (and thus irregular block codes) is fulfilled with

1

4
+

7

12
+

1

6
= 1.

Similarly the constraint (4.3) with

1

4
· 2

3
+

7

12
· 2

5
+

1

6
· 3

5
=

1

2

and the constraint (4.4) with

0 ≤ 1

6
≤ 1

4
≤ 7

12
≤ 1

are also fulfilled.

Like the optimization in Section 4.2, the different EXIT characteristics of the block codes can be grouped

in a matrix C and then the optimal weighting factors g can be found by the least-squares optimization

problem

gopt = arg min
g

||C · g − d||2 (4.23)

subject to (4.5) and (4.6). Numerical methods, as for instance given in [Tüc04], [TH02b], [GMW91],

[GMW81] can be used to solve this problem.
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Figure 4.6: (17,7) – convolutional code with doping rate 100 (1 output bit of y1 to 100 output bits of y2)

The optimization process calculates die weightings gℓ, which match the weighting factors for the EXIT-

characteristics. The number of bits N(gℓ), which are encoded with the ℓ’th block code, are calculated

by

N(gℓ) = rnd

[

gℓ V w∗ rℓ

w

]

= rnd

[

gℓ V
rℓ

r

]

with ∑

∀ℓ

N(gℓ) = V,

where the rounding operation rnd has to be chosen in such a way that V is equal to the number of input

bits.

The chosen implementation rounds every N(gℓ) down to the last complete block and encodes the left

input bits with the last generator matrix GL. The receiver, knowing the overall rate r and the number

of received bits, calculates the approximately number of input bits. With the implementation used at the

encoder the decoder now verifies if the calculated number of input bits results in the number of received

bits. If this is not the case the number of input bits is decreased by one and the operation is repeated till

an unique assignment is found. A disadvantage of this method is that the number of input bits can not

be calculated exactly but only the assignment of the block codes at the receiver. This is not a big issue if

encoder and decoder agree to have e.g. a ’1’ as the last bit and cut off the last ’0’s. The source decoder

have to add a certain amount of ’0’s in that case.

4.4.1 Simulation Example

The approach will now be clarified by a complete example. As an inner component we select a doped

recursive non-systematic (17, 7) convolutional code according to [tB00] shown by Figure 4.6. Doping

in this case means that the output is almost exclusively determined by y2. Only every i. bit for a doping

rate of 1:i is substituted by a bit from output y1. In the example we use a doping rate of 1:100 so every

100’th output bit is substituted.

For block codes of different length with different number of parity bits we have pre-calculated SDSD-

EXIT-characteristics to choose from. In this example block codes with 1, 2 or 3 input bits each with

1 to 9 parity bits were available. The target rate should be r = 1/2. The characteristic for the inner

component is recorded for a Es/N0 = −2.82 dB, close to the Shannon limit for a rate r = 1/2.

Table 4.2 shows the result of the optimization problem (4.23) with the following generator matrices:

G1 =
(

1 1 1 1 1 1 1 1 1 1
)
, G2 =

(
1 0 1 1 1 1
0 1 1 1 1 1

)

,

G3 =

(
1 0 1 1 1
0 1 1 1 1

)

, G4 =

(
1 0 1 1
0 1 1 1

)

, G5 =

(
1 0 1
0 1 1

)
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generator matrix rate rℓ gℓ

G1 1/10 0.026

G2 2/6 0.336

G3 2/5 0.105

G4 2/4 0.160

G5 2/3 0.372

r = 1/2
∑

= 1

Table 4.2: Result of the optimization problem (4.23)
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Figure 4.7: EXIT chart with characteristics for channel decoder, SDSD of different block codes, as well

as for the irregular SDSD

Figure 4.7 shows the different SDSD-EXIT characteristics of the selected block codes as dashed lines as

well as their weighted combination as blue line. The upper right corner can be reached through an open

decoding tunnel to achieve error free decoding.

The curves in Figure 4.8 represent the bit error rate dependent on Es/N0 for different numbers of itera-

tions. It can be seen that for high number of iterations very good results can be achieved. At a error rate

of 10−4 we are just 0.2 dB away from the Shannon limit. However, this bound is only valid for blocks

with unlimited length. So we also have a look at the Sphere-Packing Bound (SPB) by [Sha59]. [DDP98]

gives a good overview which we want to summarize as follows.

The code word error probability Pw for a code block of length X is described for the SPB by:

Pw ≥ f(X , θs, A),

where

A =
√

2 Es/N0 =
√

2 r EB/N0
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Figure 4.8: Bit error rate of the proposed system with 5, 10, 20, 50 and 100 iterations

is the amplitude depending on the channel quality. Then, f(X , θ, A) gives the probability that a X -

dimensional Gaussian random vector with mean (A, 0, . . . , 0) and with the identity matrix as covariance

falls outside a X -dimensional cone of half-angle θ around its mean. If this cone encompasses a fraction

of 1/2V of the total solid angle of the X-dimensional Euclidean space, its half-angle is denoted as θs.

The information block size V is given by

V = rX .

If V is big enough (V & 100), we can use asymptotic approximations of [DDP98]. In this case the angle

θs is

θs ≈ arcsin(2−r).

Hence it follows

f(X , θ, A) ≈ [g(θ, A) sin(θ) exp(−(A2 − A g(θ, A) cos(θ))/2)]X√
Xπ
√

1 + g2(θ, A) sin(θ)(A g(θ, A) sin2(θ) − cos(θ))
,

with

g(θ, A) =
1

2

(

A cos(θ) +
√

A2 cos2(θ) + 4
)

.

If we consider a code block length V = 20000 and a error probability of Pw = 10−4 like used in the

simulation shown in Figure 4.8, the Shannon limit is moved by +0.203 dB. This bound is also shown

in Figure 4.8 and crosses the curves for 50 and 100 Iterations approximately at the given symbol error

probability of 10−4.

4.4.2 Irregular Block Codes for Short Code Block Length

To proof the eligibility of the proposed FlexCode coding concept, the simulation has also be done for

smaller code block lengths. The doped convolutional code from the previous section leads, especially
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y

Figure 4.9: Recursive, non-systematic (17,10) convolutional code

for small code block lengths, to very bad results, so we used the rate r = 1, (17, 10) convolutional code

shown in Figure 4.9 and a irregular SDSD optimized for this scenario with the weighting factors of table

4.3 and the generator matrices

G1 =

(
1 0 1 1 1 1
0 1 1 1 1 1

)

, G2 =

(
1 0 1 1 1
0 1 1 1 1

)

,

G3 =





1 0 0 1
0 1 0 1
0 0 1 1



 .

Figure 4.10 show the results of this system with 50 iterations. You can see that especially for the code

block length between 500 and 1000 the error floor starts at a high bit error rate.

For better comparison with the FlexCode reference system described in Deliverable D-2.2 [Fle08c], we

simulated the proposed and the reference system with a fixed code block length of 700 for 5, 10, 20 and

50 iterations. The results are shown in Figure 4.11. The parameter S of the interleaver was set to S = 14
for both systems. The following observations can be made:

• The system with irregular block codes considerably benefits from the increasing of the iterations,

while the Turbo Code system just profits minimal. This can be explained with a wider open

decoding tunnel in the EXIT-Chart for higher ES/N0 in the reference system.

• The error floor of the Turbo Code system begins later and lies deeper by factor 10 compared to the

system using irregular block codes.

Applied to the concept of irregular block codes shown in Figure 4.5, where the bit stream v is the output

of the arithmetic coder of the FlexCode source coder, this leads to results shown in Figure 4.12. Again

the irregular block code system needs a very high number of iterations to be as good as the Turbo system,

but with a higher error floor. It also introduces a higher computational complexity.

generator matrix rate rℓ gℓ

G1 2/6 0.150

G2 2/5 0.580

G3 3/4 0.270

r = 1/2
∑

= 1

Table 4.3: Result of the optimization problem (4.23) for the non-doped (17, 10) convolutional code
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In addition it has to be noted that for the simulation shown in Figure 4.12 the S parameter of the inter-

leaver was set to S = 20 because the inner component is a rate r = 1 convolutional code and therefore

the code block length felt not below 1000 bit. Otherwise the results would have been even worse in

comparison to the Turbo system, which has a minimal code block length of 500.
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Increasing

Block Size
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Figure 4.10: Bit error rate for irregular block code in combination with non-doped convolutional code

with code block length of 500, 1000, 2000, 5000 and 10000 bits and 50 iterations

4.5 Error-Resilient Source Compression Using Iterative Source-Channel

Decoding

In this Section, we show how the proposed system for iterative source-channel decoding (ISCD) (see De-

liverable D-2.2 [Fle08c] and, e.g., [ACS08] for details) can be efficiently utilized to realize a near-entropy

entropy coding scheme resilient to transmission errors. The conventional entropy coding schemes like,

e.g., arithmetic coding [BCK07], are very sensitive to bit errors. A single bit error can cause the complete

frame to be wrongly decoded. Therefore a strong channel coding algorithm is necessary which however

results in additional bit rate. The approach we introduce here adds only as much redundancy as neces-

sary to achieve the reconstruction, given a channel with known quality. However, the approach does not

guarantee perfect lossless reconstruction but only near-lossless reconstruction. However, in real-world

codecs a perfect lossless reconstruction is not absolutely necessary as the source decoder artifacts caused

by an incorrectly decoded parameter can be negligible.

In [MB02] and [GZ92], it has been shown that Turbo codes can also be used as source encoders. Con-

ventional entropy source encoders such as Huffman codes or arithmetic codes are very sensitive to trans-

mission errors while the Turbo source coding approach automatically incorporates error protection and

can adapt on the fly to changing channel conditions by increasing or decreasing the amount of artificial

redundancy introduced by the channel code. Iterative source-channel decoding has also been applied to
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Figure 4.11: Bit error rate for a code block length of 700 for irregular block code in combination with

non-doped convolutional code in comparison to parallel Turbo Code reference system with

5, 10, 20 and 50 iterations
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Figure 4.12: Symbol error rate of reference coder described in Deliverable D-2.2 [Fle08c] for usage of

irregular block code concept in comparison to Turbo Code
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variable-length codes (VLCs) [GFGR01], however, it has already been shown in [Tho07], [TSV08] that

the use of a system with fixed-length codes (FLCs) and redundant index assignments leads to a lower-

complexity receiver while keeping the reconstruction quality as well as the amount of transmitted data

(almost) constant.

In this Section we introduce a novel concept for near-lossless compression of scalar-quantized source

codec parameters. This concept uses a joint source-channel coding approach with ISCD at the receiver,

similar to the Turbo source coding principle. The inner (channel) code of the transmitter is of rate

r ≥ 1, such that the system becomes capacity-achieving [AKtB04], [Tho07]. If this inner (channel)

code is fixed, the outer code, i.e., the (redundant) index assignment of the different parameters can be

matched quite well to the inner code using the principles of irregular codes [TH02a], allowing a simple

optimization using EXIT charts [ten01]. The concept of irregularity has been successfully applied to

the ISCD system [SVCS08] by modifying the (redundant) index assignment, i.e., the assignment of bit

patterns to codebook indices, of a (scalar) quantizer to get so-called irregular index assignments (IIA).

These irregular index assignments extend the concept of redundant index assignments [CVA06]. In this

contribution, we show that the optimization of the irregular index assignments can be modified such that

the compression ratio is maximized, leading to an efficient, flexible compression system which can easily

adapt to varying channel conditions.

In this Section we utilize the abstract system model already introduced in Section 4.1 for the demon-

stration of the ISCD concept. This system model is similar to the one utilized in Section 3.1. It will

be shown in Section 4.5.1 how the concept of irregular index assignments can be used to realize an

error-resilient near-lossless entropy coder. This is achieved by modifying the optimization criterion of

the index assignment. The capabilities of the proposed system are shown by a simulation example in

Section 4.5.2.

4.5.1 Near-Lossless Source Coding Using Irregular Index Assignments

It has been shown in, e.g., [MB02] and [GZ92], that Turbo codes can be efficiently used as source codes,

realizing a near-lossless compression scheme. Near-lossless means that the perfect reconstruction is not

guaranteed. Classical entropy coding compression schemes like Huffman or arithmetic codes are able

to achieve high compression ratios with moderate computational complexity, however, in the presence

of channel noise, severe error propagation and synchronization losses are possible. Soft decision source

decoding and iterative source-channel decoding can also be applied to entropy codes [GFGR01], with

increased computational complexity however. It has been shown in [Tho07] that with lower computa-

tional complexity at the receiver, a system utilizing fixed-length codes can achieve comparable results

(in terms of reconstruction quality and symbol error rate) to a system with variable-length codes, in the

case that channel noise is present.

The ISCD system using redundant index assignments introduced in Section 4.1 is used in this paper for

realizing a near-lossless source coding system. In this case, the convolutional code is a rate rCC > 1
code obtained by puncturing a rate < 1 code and the index assignment has to be optimized such that a

minimum number of transmitted bits NY = (NX + J) · 1
rCC results.

Thus, the task of the source coder is to find an index assignment which minimizes the number of trans-

mitted bits and allows near-lossless decoding of the parameters at the receiver/decoder. The approach

presented here is based on the concept of Irregular index assignments (IIA), introduced in [SVCS08]

and is an extension of the irregular codes’ concept. As stated in Section 4.1, the index assignment for

the parameter uκ comprises a block code ΓR
κ of rate rIA

κ = (log2 Q)/w∗
κ = w/w∗

κ. Instead of using the

same amount of bit redundancy w∗
κ = w∗ for each parameter in order to achieve an overall rate w/w∗

outer encoding, we use the concept of irregular codes and vary w∗
κ for each parameter while keeping

w∗ constant. This allows us to optimize the index assignments and to get an SDSD EXIT characteristic
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which matches the channel decoder characteristic considerably well.

In order to perform source coding, the optimization goal is a different one as in [TH02a] and [SVCS08].

The index assignments which have a high rate (and thus a small number of output bits) shall be pre-

ferred. Therefore, the goal of the optimization is to find an EXIT characteristic which results in the

smallest number of transmitted bits with the constraint that an open decoding tunnel exists. Therefore,

the weighting factors g = (g1, . . . , gL)T of the L different utilized index assignments need to be chosen

such that the weights gℓ corresponding to high-rate index assignments are preferred. The optimization

goal is in fact to minimize the number of bits NX = KSw∗ after index assignment. The optimized

weights g indicate the proportions of bits after index assignment and from these, the different KS,ℓ, i.e.,

the number of parameters encoded with the ℓ’th index assignment, can be determined. The number of

resulting output bits after encoding a portion of KS,ℓ parameters with an index assignment of rate rIA
ℓ

amounts to

KS,ℓ
w

rIA
ℓ

= gℓNX (4.24)

and it holds
∑

ℓ KS,ℓ
!
= KS . Rewriting (4.24) to

NXgℓr
IA
ℓ = wKS,ℓ (4.25)

and summing up over all L different index assignments leads to

NX

L∑

ℓ=1

rIA
ℓ gℓ = w

L∑

ℓ=1

KS,ℓ (4.26)

which can be rewritten as

NXrTg = wKS ⇒ NX =
wKS

rTg
, (4.27)

with r = (rIA
1 , . . . , rIA

L )T . As KS and w are constant, minimizing the number of total bits NX corre-

sponds to maximizing rTg. This means that the task of optimizing the irregular index assignment such

that decoding is still possible and resulting with a minimum number of output bits NX can be formulated

as a linear programming optimization problem with

gopt = arg max
g

rTg = arg min
g

(−rTg) (4.28)

subject to

C · g > d + t′ (4.29)

0 ≤ gℓ ≤ 1 ∀ℓ ∈ {1, . . . , L} (4.30)

L∑

ℓ=1

gℓ = 1 , (4.31)

with C
.
= (c1, . . . , cL) composed of cℓ

.
= (cℓ,1, . . . , cℓ,P )T , which consists of P sample points of the

characteristic CSDSD,ℓ of a specific index assignment ΓR
ℓ . The vector d consists of P sample points of the

inverse channel code EXIT characteristic C−1
CD , measured at the channel quality for which the system is

optimized. The constraint (4.29) ensures that an open decoding tunnel is present. In (4.29), the vector

t′ denotes an offset vector which is chosen such that a larger open decoding tunnel is present, leading to

better convergence properties at the receiver. In fact, the constraint C · g > d would only guarantee an

infinitely small decoding tunnel which could only be exploited with an infinite block size (KS → ∞).

The constraints (4.30) and (4.31) ensure that all the weighting factors gℓ are in the range 0 ≤ gℓ ≤ 1 and
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that
∑

ℓ gℓ = 1. The solution to this linear programming optimization problem can be easily found using

numerical methods (see, e.g., [GMW91]).

Using the factors gopt resulting from the optimization (4.28), the number of parameters KS,ℓ which are

encoded with the index assignment of rate rIA
ℓ can be determined. An equation system with L + 1

unknowns, consisting of the L different equations (4.24) (ℓ = 1 . . . , L) and
∑

ℓ KS,ℓ
!
= KS can be

formulated 










g1 − w
rIA
1

0 · · · 0

g2 0 − w
rIA
2

. . .
...

...
...

. . .
. . . 0

gL 0 · · · 0 − w
rIA
L

0 1 · · · · · · 1












︸ ︷︷ ︸
.
= F

·








NX

KS,1
...

KS,L








=








0
...

0
KS








. (4.32)

The matrix F can also be written in short notation with

F =

(
g −w · diag(r)−1

0 1T
L

)

. (4.33)

The solution to (4.32) is given by

(
NX

K

)

= F−1 ·
(

0L

KS

)

(4.34)

with K = (KS,1, . . . , KS,L)T and 0L denoting the length L all-zeros column vector. The fractions KS,ℓ

as well NX can be determined by (numerically) solving (4.34). Note that due to its special structure, F

has full rank and can be inverted. The value NX = KSw∗ can also be determined using (4.27).

4.5.2 Simulation Example

We show the concept of near-lossless source coding using irregular index assignments by a simulation

example. A block consisting of KS = 10000 parameters resulting from a Gaussian distributed autore-

gressive source of first order (Gauss-Markov source) shall be compressed. The parameters show intra-

frame correlation (i.e., the parameters in one frame are correlated) with correlation coefficient ρ = 0.9.

The parameters are quantized using a Q = 16 level Lloyd-Max codebook U. The index assignments

BC16
5 , BC16

6 , . . . , BC16
15 (with BC

Q
w∗) are generated using the design guidelines and the generator matrix

given in [SVCS08].

For demonstrating the concept, we utilize a rate rCC
orig = 1

2 recursive systematic convolutional code of

memory J = 3 with generator polynomials GCC
orig(D) =

(

1, 1
1+D+D2+D3

)

which is punctured to an over-

all rate rCC = 2 code by using the puncturing matrix

P =

(
1 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0 1 0

)

. (4.35)

The EXIT characteristic CCD of the rate rCC = 2 convolutional code for perfect channel conditions (i.e.,

Es/N0 → ∞) as well as the SDSD EXIT charts of the different index assignments of rates 4/15 → 4/5
are depicted in Fig. 4.13. The irregular characteristic CIIA,A

SDSD resulting from the optimization (4.28) is also

depicted in Fig. 4.13. A quite narrow open decoding tunnel is present which means that quite a large

number of iterations have to be performed at the receiver. The numerical result of the optimization is
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Figure 4.13: EXIT chart analysis of the irregular index assignments for source coding

given in Table 4.4 (Setup A): only the rate 4/5 and 4/6 index assignments are utilized. For KS = 10000,

this leads to a total number of NX = 55285 bits after index assignment, i.e., a total number of 27644
bits after convolutional coding (≈ 2.76 bit per parameter). The upper limit of the reachable compression

is given by the conditional entropy H(Ūκ|Ūκ−1) which in this setup amounts to H(Ūκ|Ūκ−1) = 2.62 bit

per parameter leading to a minimal number of 26202 bits per block. The entropy can only be achieved if

the decoding tunnel becomes infinitely narrow, however, this is not possible due to the channel decoder

characteristic (I [ext]
CD (I[apri]

CD = 0) ≈ 0.1). The utilization of a different channel code with a smaller value

of I [ext]
CD (I[apri]

CD = 0) might lead to better compression properties.

However, the decoding tunnel might be too narrow for the decoding because of the finite block size. By

selecting an offset vector t′ > 0L a broader decoding tunnel can be found. The results of the optimization

for this case are also given in Table 4.4 (Setup B).

The main advantage of the proposed system is the high flexibility. If the system shall be designed such

that channel induced errors may occur, the parameter settings for the irregular index assignment can be

easily adapted. As an example, we assume that the channel quality can drop down to Es/N0 = 0 dB. In

this case, the EXIT characteristic of the channel decoder changes and an intersection occurs. The EXIT

characteristic of the rate rCC = 2 convolutional code for Es/N0 = 0 dB is also depicted in Fig. 4.13 and

denoted by C′
CD. Using this characteristic, the linear programming optimization (4.28) can be carried

out and a new optimized EXIT curve CIIA,C
SDSD results. Of course, as the channel quality becomes worse,

additional artificial redundancy has to be introduced resulting in a larger block size NX after index

assignment. The result of the optimization is also given in Table 4.4 (Setup C). This irregular index

assignment results in a total number of NX = 77670 bits, i.e., 38837 bits after channel coding.
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• Setup A (Es/N0 → ∞, t′ = 0L)

Rate rIA
ℓ Γℓ gℓ KS,ℓ KS,ℓ · w

rIA
ℓ

4/5 BC16
5 0.4265 K

(4/5)
S = 4715 23575

4/6 BC16
6 0.5735 K

(4/6)
S = 5285 31710

∑
= 1

∑
= NX = 55285

• Setup B (Es/N0 → ∞, t′ > 0L)

Rate rIA
ℓ Γℓ gℓ KS,ℓ KS,ℓ · w

rIA
ℓ

4/5 BC16
5 0.2688 K

(4/5)
S = 3061 15305

4/6 BC16
6 0.7312 K

(4/6)
S = 6939 41634

∑
= 1

∑
= NX = 56939

• Setup C (Es/N0 = 0 dB, t′ = 0L)

Rate rIA
ℓ Γℓ gℓ KS,ℓ KS,ℓ · w

rIA
ℓ

4/5 BC16
5 0.1578 K

(4/5)
S = 2451 12255

4/6 BC16
6 0.0650 K

(4/6)
S = 842 5052

4/9 BC16
9 0.7772 K

(4/9)
S = 6707 60363

∑
= 1

∑
= NX = 77670

Table 4.4: Results of the irregular index assignment for near-lossless source coding

Figure 4.14 depicts the parameter SNR after reconstruction as a function of the performed iterations. For

all three setups, a perfect channel quality (Es/N0 → ∞) has been studied in the example. Additionally,

for Setup C, a channel quality of Es/N0 = 0 dB has been utilized. The more bits are utilized (and thus

the larger the decoding tunnel is) the faster the convergence to the maximum parameter SNR of ≈ 20 dB

(due to the quantization with codebook U). For Setup A, it can be observed that even with 90 iterations

we can only approach the maximum attainable parameter SNR. This is due to the very narrow decoding

tunnel caused by t′ = 0L and the finite block size of KS = 10000 parameters. In Setup B, with a

slightly wider decoding tunnel (t′ > 0L with maxℓ t′ℓ = 0.01) a faster convergence can be observed

and the maximum parameter SNR is reached. Setup C with Es/N0 = 0 dB shows a slower convergence

than Setup A because of the very narrow decoding tunnel visible in Fig. 4.13 (especially during the first

iterations). For Setup C with Es/N0 → ∞ a large decoding tunnel is open. This leads to a very fast

convergence (7 iterations) towards the maximum parameter SNR.

Notice that Setup A for Es/N0 → ∞ is unable to reach the maximum available parameter SNR even

for a high number of iterations. This is due to the error floor which occurs due to the relatively small

block size of 10000 parameters and the narrow decoding tunnel: The decoder is unable to reach the

(1, 1) point in the EXIT chart. This error floor is the reason that the system is only able to perform

near-lossless source coding. This phenomenon has also been observed in [GZ92, Tho07]. For narrow

decoding tunnels, the error floor is higher as for the setups with a large decoding tunnel. The reason for

this is that the decoding gets stuck during the iterations if only a narrow tunnel is available. In the case
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Figure 4.14: Reconstruction parameter SNR for the ISCD system employing irregular index assignments

of Setup C, it takes more than 90 iterations to reach the error floor at a channel quality of Es/N0 = 0 dB

(see Fig. 4.13). However, if the channel quality gets better, a larger decoding tunnel can be observed and

the error floor is reached after less than 10 iterations.
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Chapter 5

Conclusion

In this document we have presented the final FlexCode channel coder. In Chapter 2 the channel coder

implementation is detailed and both operating modes of the channel coder are presented. It is shown how

the presented channel coding concept is used for iterative source-channel decoding and how multiple

description is integrated within the FlexCode channel coder if channels where both bit errors and packet

losses may occur, are employed. Several implementational details are given, such as the rate adaptation

in both operating modes, the selection of good-working parameter individual block codes, and how the

utilization of a priori knowledge may help to improve the subjective quality of the FlexCode codec in

adverse channel conditions.

In Chapters 3 and 4 several findings and research advancements that have been made during the FlexCode

project are presented. In Chapter 3 complexity reduction principles for iterative source-channel decoding

(ISCD) are given. ISCD is the underlying concept of the FlexCode channel coder. Complexity reduction

measures by either modifying the quantizer or by modifying the search procedure in the soft decision

source decoder are given. It is also shown how both optimizations can be combined leading to a low-

complexity source decoder by keeping the performance loss in terms of reconstruction SNR small. In

Chapter 4 the concept of irregular index assignments and several applications of this powerful technique

are given. These applications range from near Shannon-limit error control coding of arbitrary bit streams

to error-resilient source compression and unequal error protection. All these applications are realized

using the same underlying concept thus achieving and maintaining a high amount of flexibility, leading

to the FlexCode “one system fits all” philosophy.
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