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Abstract

This report describes the technologies and implementation of the baseline source
coder of the FlexCode project. The FlexCode source coding approach is moti-
vated by the increasing need for source coders that can adapt to the network con-
ditions and user requirements at any time. High-rate quantization theory, the so-
called sensitivity-matrix, and multiple-description coding form vital components
of the approach. A set of new technologies that were developed during the first
18 months of the project is discussed. These include a method to determine the
rate distribution between signal and data, a scalable quantization method based on
bit-plane coding, new methods for enhancing quantization efficiency based on sig-
nal replication, improved methods for lattice quantization, and sensitivity-matrix
based approaches towards perceptual modeling. Finally, the practical implementa-
tion of the baseline FlexCode source coder is described. This includes a discussion
of the coder architecture and coder specifications, a brief description of each of the
routines and a brief analysis of the computational complexity of the coder.
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Chapter 1

Introduction

1.1 Introduction

The general objective of the FlexCode project is to to develop a new generation
of generic coding algorithms that are significantly more flexible than existing al-
gorithms, which generally are application-specific, while retaining or improving
on the efficiency and quality of current state-of-the-art algorithms. The objective
addresses the coding needs for a rapidly growing infrastructure providing an in-
creasing diversity of services with an increasingly heterogeneous network.

The algorithm development work of FlexCode is separated into source coding
and channel coding. Work package 1 (WP1) deals with source coding and WP2
with channel coding. This report is part of deliverable D1.1, which is the first
deliverable of WP1.

WP1 has as objective to develop a source coding methodology and its imple-
mentation. The specific objectives of WP1 are

• to develop generic, low-complexity models of perception;

• to provide a methodology for a flexible, efficient, low-complexity, generic
source coder;

• to create a practical implementation aimed at audio signals.

The flexibility in the FlexCode source coder allows for instantaneous adaptation
of the coding to satisfy rate, quality, and robustness requirements by using com-
putable quantizers and probabilistic signal models. Flexibility is also achieved by
using innovative embedded coding techniques that allow the decoding of the bit
stream even when layer(s) of bits have been removed after encoding (for example
if a particular transmission leg or receiver has low capacity). The work of WP1
includes multiple-description coding (MDC) techniques that address packet loss
(as MDC is an integral part of source coding, it is natural to include it in WP1).
Again the emphasis is on creating flexible coding: the new MDC coding schemes
are scalable, thus facilitating the instantaneous adaptation of the level of robustness
to the packet loss rate.

The FlexCode source coder is based on high-rate theory. High-rate theory al-
lows the analytic optimization of the source coder. The quantizers and MDC con-
figuration are specified by means of equations that are based on probabilistic signal
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models. The equations have analytic solutions that can be adapted to the quality
and network requirements at hand. The source coder can migrate seamlessly from
single-description coding to multiple-description coding. Bit-plane coding tech-
niques lead to a layered bit stream that facilitates a reduction in rate after encoding.

The high-rate theory based source coding approach is complemented with the
sensitivity matrix approach used for describing sophisticated perceptual models.
The sensitivity matrix approach replaces distortion measures that would make
quantization computationally intractable by a local quadratic approximation. This
allows the introduction of sophisticated distortion perception-based measures that
have hitherto not been used for source coding because of practical problems.

1.2 Description of the Source Coder

As stated in Section 1.1, the FlexCode approach is based on high-rate quantization
theory and the sensitivity matrix. This approach naturally leads to a flexible source
coder that can adapt to rate, quality, and packet-loss conditions in real time. To
make the principles work well in complete system, a number of new technologies
were developed in WP1. In addition, to illustrate the approach a practical audio
coder is under development in WP1. The audio coder is to operate at rates between
10 and 30 kb/s. The baseline version of this practical coder, which operates on a
16 kHz sampled signal, is described in this report.

Existing methods towards audio and speech coding that operate at rates be-
tween 10 and 30 kb/s can be separated roughly into linear-prediction (autoregres-
sive model) based and transform based coding methods. As was envisioned, flexi-
ble source coding schemes based on both linear prediction based coding and trans-
form coding were initially developed under FlexCode. It was found that the two
approaches naturally converge and only one FlexCoder source coder, albeit with
different options, is currently under development. The coder has contributions to
its components from the partners KTH, Ericsson, France Telecom, and Nokia.

In this Section, we first discuss the natural convergence of the flexible prediction
and transform approaches when scalable high performance is required. We then
discuss how this combines with the theory based approach towards quantization
and multiple description coding.

1.2.1 Convergence of Predictive and Transform Based Approaches

To increase the efficiency of quantization of low-dimensional data vectors, coding
architectures are designed to minimize the inter-dependencies between vectors or
scalars that are to be quantized. The most common architectures are predictive
and transform coding. This section shows that even when starting from these dif-
ferent vantage points, the requirement for high efficiency leads to similar coding
structures. For the purpose of simplicity, and without loss of generality of the dis-
cussed reasoning, we assume that the distortion measure is a simple squared error
criterion.

If a predicted value for the next signal sample is subtracted from this sample at
the encoder before being quantized, and added to the quantizer output at the de-
coder, then the dynamic range of the signal that is to be quantized is reduced. For a
scalar quantizer, the reduction of the dynamic range of the signal leads to a reduced
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quantization error at a given fixed or mean coding rate. As the predicted sample
must be identical at both encoder and decoder, the decoded signal must be used
for prediction in both cases and the procedure is referred to as closed-loop predic-
tion. It is well-known (e.g., [1]) that linear-prediction based analysis-by-synthesis
(LPAS) methods such as the ubiquitous CELP algorithm [2] are generalizations of
closed-loop prediction.

As discussed in [3, 4], closed-loop prediction (and LPAS) methods have a sig-
nificant disadvantage. The quantization cell shape of predictive coding is not pre-
served during the closed-loop prediction process. Better performance can be ob-
tained if the prediction is not seen as simply a method to reduce correlations but
as the estimation of a probabilistic model of the signal [3]. That is, the signal is
viewed as having been generated by an autoregressive process and the parameters
specifying this process are estimated with the linear prediction analysis. The prob-
abilistic model approach suggests direct quantization in the signal domain using
the signal model. Unfortunately, coding in the signal domain based on this signal
model is difficult since it requires that quantizers must be available for each re-
alization of the probabilistic signal model. This leads to an intractable quantizer
design and storage problem.

A practical method towards quantization in the signal domain using a proba-
bilistic autoregressive model was proposed in [3, 4, 5] (and earlier associated con-
ference publications). To make coding practical, an adaptive unitary transform of
the zero-state response signal is used. The transform is selected to describe corre-
lations associated with the autoregressive signal model. For each successive signal
block the transform is the Karhunen-Loève transform for the zero-state response of
the autoregressive model for that signal block. Scalar quantization in the transform
domain is now effective since the correlations between the samples are removed,
and since reverse waterfilling, e.g., [6], can be invoked. Knowledge of the signal
statistics facilitates the analytic design of optimal quantizers. Since the transform
is unitary, it preserves the geometry of the signal, thus preserving the quantization
cell shape, eliminating the loss in coding gain associated with predictive coding.
As is shown in [3, 5] the method performs well even for short transform blocks,
thus preserving the low-delay coding delay advantage of prediction-based coding.

To place our work in context, we note that the TCX coding work of [7] is
to some extent similar in spirit to [3, 5], as it uses autoregressive model and the
Fourier transform and codes in a colored spectral domain. The main source coding
FlexCode innovations over this earlier work is the probabilistic interpretation of the
autoregressive models, which facilitates quantizer design without further consider-
ation of the data, and the usage of the Karhunen-Loève transform that is optimal
for the model of the block rather than a fixed Fourier transform. Other work that
resembles the FlexCode approach is [8] and [9], where the signal is first subjected
to a prediction error filter, flattening the signal spectrum, prior to a transform with
a discrete cosine transform and quantization with a vector quantizer. In this case
the quantizers are trained and not optimal for the block at hand. These earlier
approaches do not use a probabilistic interpretation of the signal model.

Fixed transforms are commonly used in source coding. Sinusoids are eigen-
functions of time-invariant linear operators and, asymptotically with increasing
block length, form the eigenvectors of the covariance matrix of a stationary signal.
This means that discrete Fourier transform (DFT) and discrete cosine transform
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(DCT) decorrelate stationary signals. As stated above, decorrelation leads to ef-
ficient coding with scalar quantizers. As a result block-based Fourier and cosine
transforms are commonly used in audio coding. In practice, the DCT converges
faster to ideal decorrelation behavior with increasing block length than the DFT
1. More-over, the DCT removes the issues stemming from the usage of complex
representations. As a result, lapped transforms based on the DCT are commonly
used for audio coding. Perfect-reconstruction lapped transforms were invented in
the context of audio coding and can be traced back to the original work of Princen
and Bradley [11].

Transform coding based on the DCT requires the specification of a quantizer
step size for the transform coefficients. In earlier audio coders (e.g., [12, 13]),
information relating to the signal power and the masking level for each of a set of
frequency bands is transmitted to the decoder as side information. It has not been
common to use an explicit probabilistic signal model for this purpose, although, as
mentioned above, spectral models have been used, e.g. [7, 14]. At low rates the
benefit of probabilistic signal models is well motivated as such models facilitate
the encoding of the power spectrum with high efficiency. Since the encoding of the
autoregressive model parameters is well understood, usage of the autoregressive
model to describe the spectral density of the signal is natural.

The reasoning described above has led to a single FlexCode coder implementa-
tion that has two main configurations that are both based on a (Gaussian) autore-
gressive model assumption:

• Fixed-transform configuration: the coder is based on a critically-sampled
perfect-reconstruction DCT filterbank with smooth overlapped windows for
each block. The rate allocation for the coefficients is based on the estimated
probabilistic signal model. The transform coefficients are quantized using to
embedded scalar quantizers that can be adapted to rate and quality require-
ments. These quantizers will be replaced by MDC quantizers in the future.
The method is relatively low computational complexity.

• Adaptive-transform configuration: for each signal block the zero-input re-
sponse of the autoregressive signal model is subtracted first. The zero-
response autoregressive-model based Karhunen-Loève transform is then ap-
plied to the remainder signal. The resulting coefficients are quantized as in
the fixed-transform setup. The computational complexity for the computa-
tion of the Karhunen-Loève transform is relatively high.

1.2.2 The FlexCode Source Coding Approach

The FlexCode source coding approach includes a number of significant innova-
tions. We describe the main innovations. The firs main innovation is that the signal
is quantized with scalable quantizers that are directly adapted to the probabilis-
tic source model and to the distortion at hand. This implies that the average or
instantaneous rate can be reset at any time, as a function of network or user qual-
ity constraints. The second main innovation is that the quantization indices can
be encoded using an effective embedded arrangement such that when bits can be

1The DCT has better symmetry properties and only the DCT facilitates critical sampling of trans-
forms with overlapping smooth windows between the blocks (e.g., [10]).
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stripped from the encoded signal representation the bit stream remains decodable,
at a minimal loss of overall efficiency. The third innovation is that the source
coding approach uses a scalable multiple-description coding (MDC), facilitating a
continuously variable trade-off between robustness against packet loss and bit rate
for a given level of reconstruction fidelity. We anticipate to use that the coder will
be configured to use either encoding embedded coding or MDC, but not both, as
existing results [15, 16] suggest relatively little benefit from joint optimization. The
fourth innovation is that the distortion of the signal is described with a sensitivity
matrix approach, which facilitates the usage of sophisticated distortion measures
without a significant computational penalty. It does this by locally approximating
the distortion with a quadratic model. Thus, the complex static model is replaced
by an adaptive quadratic model.

The innovations are combined in a source coding architecture that exploits the
source model both to compute the adaptive quadratic distortion model and to spec-
ify the setting of the quantizers. In the following we outline the encoding architec-
ture, including some comments on their functionality:

1. The probabilistic model for the signal is estimated. This estimation process
takes the form of a linear-predictive analysis specifying the autoregressive
model coefficients. The model can take various levels of sophistication in
terms of model order and in terms of modeling the pitch structure of the
audio signal by means of dedicated autoregressive models. It is noted that
very high precision is required for autoregressive models dedicated to pitch.

2. The probabilistic signal model is quantized using conventional approaches
for quantizing autoregressive models. Conventional methods can be used
since it was proven in the project (cf. Section 2.2) that the rate for the model
is independent of the overall rate.

3. The signal model is used to specify a pre-processing step that renders an un-
weighted squared-error criterion a good approximation of perceived error (as
described in [17]). That is, the signal is now represented in a “perceptual-
domain”. The FlexCode approach makes this pre-processing possible for
sophisticated distortion measures because it is represented with an adaptive
squared-error criterion. To this purpose an analysis of the sophisticated dis-
tortion measure must be applied on the reconstructed signal, which is avail-
able at both encoder and decoder.

4. The perceptual-domain signal is transformed to a representation that has rel-
atively independent coefficients using either the Karhunen-Loève transform
(after subtraction of the zero-input response of the autoregressive filter) or
the lapped DCT.

5. The transformed coefficients are quantized using adaptive scalar quantizers
or adaptive lattice quantizers. Depending on the setting of the coder, the
quantizers are optimized for constrained-entropy or contrained-resolution
quantization. This step will be combined with adaptive MDC in later ver-
sions of the coder.

6. The quantization indices are prepared for transmission. In the case of
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constrained-entropy coding this includes the step of lossless encoding using
arithmetic coding.

The decoder performs the corresponding decoding steps in inverse order.

1.3 Report Overview

This report consists of three chapters: this introduction, a chapter introducing new
technologies, and a chapter describing the practical implementation of the baseline
coder.

Chapter 2 focuses on a particular subset of new technologies developed for Flex-
Code . All these technologies have been implmented individually and will be part
of the FlexCode source coder. However, some of the methods have not yet been im-
plemented in the current system because of time constraints. The technologies will
be supplemented by additional technologies that are currently being developed.
The new technologies that Chapter 2 describes are rate distribution between model
and signal data (Section 2.2), bit plane coding to allow rate reduction after cod-
ing (Section 2.3), techniques that use signal replication to enhance the efficiency
for coding the data (Section 2.4), efficient approaches towards lattice quantization
(Section 2.5) and sensitivity-matrix based approaches towards perceptual modeling
(Section 2.6).

Chapter 3 describes the practical implementation of the baseline FlexCode
source coder. It starts with a description oft the coder architecture and coder
specifications. It describes in detail how the FlexCode principles were incorpo-
rated in the implementation. A brief description of each of the routines used is
provided. The computational complexity of the coder is analyzed. Finally a brief
results section provides some indication of the performance of the baseline coder
as described in this chapter.
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Chapter 2

New Source-Coding Technology

2.1 Introduction

This chapter highlights a set of new source coding technologies that were devel-
oped for FlexCode. The technologies are aimed towards a scalable, robust coding
system. In this section we provide a brief overview of the technologies, which are
then described in detail in the remaining sections of this chapter.

The first technology that we describe relates to rate allocation. In almost any
practical source coder models are used. Except for coders operating at very low
delay, the model is transmitted to he decoder. This means that one has to decide
on the distribution of rate between the data and the model. Section 2.2 describes
a method that shows that, if the signal is divided into segments of a particular
duration, and the model structure is fixed, then the optimal bit allocation for the
model parameters does not vary with the overall rate. The distribution is worked
out in details for the autoregressive (AR) model case. It is shown that the square
error criterion in the signal domain is consistent with the commonly used root mean
square log spectral error for the model parameters. Interesting, even without the
usage of perceptual knowledge, we obtain a rate allocation for the model that is
consistent with what is commonly used. Section 2.2 follows [1] closely.

The rate-distribution technology of section 2.2 is directly relevant to FlexCode.
The source coder of FlexCode uses an AR model, and instead of a conventional
search for optimal rate distribution, we select a fixed rate for the AR model inde-
pendent of overall rate. This significantly speeds up the development process.

The second technology that we present relates to model-based bit plane cod-
ing, Most transform audio coders are built upon modified discrete cosine transform
(MDCT), scalar quantization and Huffman coding. Huffman coding is inflexible
in the sense that it depends on a particular training sequence and requires storage
of coding tables. Huffman coding may be replaced by arithmetic coding, which in
general has a better performance. The cornerstone is then to define properly the
symbols to be arithmetically coded and to estimate efficiently the related proba-
bilites. We develop here a new model-based method that applies arithmetic coding
in bit planes to bring the additional flexibility of bitstream scalability. Section 2.2
is adapted after [2].

The bit plane coding technology described in section 2.3 has been developed
for transform speech and audio coding. It finds a direct application in the MDCT
coding part of the Flexcode source coder.
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A new technology, entitled Multi-mode excitation reconstruction, was devel-
oped for FlexCode. This technology provides FlexCode with a mechanism to dy-
namically select parts of the spectra that should not be quantized, but reconstructed
from other spectra regions. The key idea is that the codec runs in multiple modes, in
which continuous parts of spectra are quantized. Then minimization of pre-defined
criteria selects the optimal mode.

The presented technology improves the robustness of FlexCode at low bitrates,
without introducing artifacts when sufficient numbers of bits are available, and the
entire spectra can be quantized. This makes the codec competitive at larger range
of bitrates and signal bandwidths. Detailed description of the technology, as well
as simulations that prove its efficiency, can be found in Section 2.4.

Section 2.5 presents various new techniques of lattice quantization, both in the
context of rate constrained, as well as entropy constrained coding. The interest in
lattices as quantizers comes from their reduced memory requirements for storage,
low complexity encoding and decoding algorithms, their optimality for uniform
sources and approximate optimality if used in conjunction with entropy constrained
coding. Within the FlexCode, lattice quantization are employed both for the sig-
nal model and for transform coefficients, possibly in conjunction with Gaussian
mixture models.

The techniques described in section 2.5 provide practical non-complex ways
of vector quantizers and they are successfully applied to the quantization of the
line spectrum frequencies of the audio signal within the rate constrained approach.
In addition, the proposed lattice rotation techniques allowing efficient use of the
structured quantizers for moderate and low bit-rates, enabling for the FlexCode the
coverage of a larger bit-rate domain. The proposed entropy coding methods enable
the use, within practical limits, of lattice quantizers for higher dimensions, in the
context of entropy constrained coding.

Section 2.6 describes two new technologies for the integration of perceptual
modeling in FlexCode. The first is multidimensional companding, which facil-
itates separation of perceptual aspects from the quantization and coding stages.
This offers flexibility in the choice and adaptation of perceptual models while re-
taining optimality at all individual stages of the coder. The second technology is
the derivation of spectral perceptual model parameters from the signal model to
maximally exploit the redundancy between the two models.

As described in detail in section 2.6, FlexCode performs practical multidimen-
sional companding by means of a pre- (and post-) weighting filter on the time
domain input signal. The optimal filter parameters are obtained from the sensi-
tivity matrix for the perceptual model. The spectral perceptual model parameters
are derived in a straightforward fashion from the signal model spectrum known to
both, encoder and decoder. This process takes into account the spectral envelope
and the spectral fine structure (e.g., pitch).

Bibliography

[1] W. B. Kleijn and A. Ozerov, “Rate distribution between model and signal,”
in Proc. IEEE Workshop on Applications of Signal Processing to Audio and
Acoustics (WASPAA), Nov. 2007, pp. 243–246.

14



[2] T. M. N. Hoang, M. Oger, S. Ragot, and M. Antonini, “Embedded transform
coding of audio signals by model-based bit plane coding,” in Proc. ICASSP,
2008.

15



2.2 Rate Distribution Between Model and Signal

In the flexible coding system envisioned by FlexCode, the rate is an adjustable
parameter. This means that one must adjust the rates for both the quantization
of the signal model parameters and for the quantizers that operate on the signal.
This section shows that the optimal rate distribution follows a simple rule (at least
asymptotically) that is easily implemented in a practical coding system.

2.2.1 Introduction

It is common practice to use a model in the encoding of audio signals. The model
provides a characterization of the statistical dependencies that exist between signal
samples. Usage of the model allows more efficient encoding of the signal. In audio
and speech coding, it is common to use adaptive models that describe the short-
term statistics of the signal (statistics that are meaningful within signal segments
of 5 to 30 ms). When a model is used, two sets of data must be transmitted: on
the one hand the model parameters and on the other hand the signal coefficients
that specify the signal given the model (we do not consider the case of backward
adaptation in this section).

Source coding is often formulated as a minimization of the bit rate required
to transmit the signal at a given fidelity. If modeling is used, then it must be de-
cided how to allocate the rate between model parameters and signal coefficients.
The standard approach to rate allocation between model parameters and signal co-
efficients is based on experimental evidence. Optimization by experimentation is
a laborious approach that is feasible only if it can be performed off-line. Thus,
this approach to rate-allocation is natural only for coders that operate at a pre-
determined rate.

Communication networks and applications of audio coding in general are be-
coming increasing heterogeneous. To facilitate usage in various environments, au-
dio coders must be able to operate at a range of rates. This implies that off-line
experiment-based optimization of the rate-distribution between model parameters
and signal coefficients is not desirable. This motivates the work in this section,
which shows how a rate distribution between model parameters and signal coef-
ficients can be derived theoretically based only on knowledge of certain signal
properties. Our general approach towards rate distribution is based on that used in
the context of the minimum description length (MDL) principle [1, 2]. The ana-
lytic relation for the bit rate allocation given in this section provides a step towards
source coding algorithms that can adapt in real-time to the allowed rate set by an
external control mechanism.

We provide practical results for the rate distribution for the particular case of
autoregressive (AR) modeling, also often referred to as linear-predictive modeling.
AR modeling has long been used in speech coding and is becoming more common
for audio coding, particularly in the context of a low delay constraint, e.g., [3].
Our results show that the rates commonly used for the AR model in speech coding,
e.g., [4, 5], can be explained based only on coding efficiency and a squared error
criterion operating directly on the speech. Importantly, this means that perceptual
aspects play only a minor role in the bit allocation for the model.

To determine the rate allocation between model parameters and signal coeffi-
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cients, we must define relations between rate and distortion for these variables. To
this purpose we use a model of quantization that is accurate only in the asymptotic
limit of high rate. Thus, our results are guaranteed only for high rates. However,
experimental evidence indicates that the resulting principles hold over a wide range
of rates, e.g., [6].

The remainder of this section starts with a derivation of generic rate-allocation
results in section 2.2.2. More detailed results are worked out for the AR case in
section 2.2.3. To show that our results remain valid for practical rate allocations,
we confirm the theory through experimental evidence in section 2.2.4.

2.2.2 Rate Allocation

We consider a stochastic process (signal) Xi. To encode the signal we divide the
signal into coding blocks of k samples. For each block, the k samples are encoded
independently from the other blocks, using a signal model. Thus, we try to opti-
mize the encoding of random vectors Xk using models that are specified by a set
of random model parameters Θ.

We now compute the number of bits required to encode a particular data se-
quence xk, using a model θ, when the coder operates at a mean distortion D. A
particular data model θ corresponds to an assumed probability density of the data
pXk|Θ(·|θ). We assume that the cells are identical in shape and write the relation
between mean distortion and cell volume V as

D = CV
2
k , (2.1)

where C is the coefficient of quantization, a constant that depends only on the
geometry of the quantization cell.

The data sequence (vector) xk falls into a particular quantization cell, with index
i = i(xk), i ∈ N. The probability of this quantization index is, under the high-rate
assumption,

pI(i(xk)) = V pXk|Θ(xk|θ), (2.2)

where, in general, V = V (i) is a function of i. The source-coding the-
orem effectively states that the codeword length required for a particular in-
dex i is − log(pI(i)). (To facilitate notational brevity, we use nats as unit of
codeword length.) If we constrain the average rate of the indices, H(I) =
−
∑

i pI(i) log(pI(i)), then we obtain a so-called constrained-entropy quantizer.
In such quantizers, V does not depend on xk under the high-rate assumption. Thus,
the codeword length required to encode a particular xk with the coder that operates
at mean distortion D is

LXk|Θ(xk|θ) = − log
(
pXk|Θ(xk|θ)

(D
C

)− 2
k
)
. (2.3)

The codeword length of (2.3) can be minimized by selecting the best model
parameters for the particular sequence. This simply the parameter vector that max-
imizes the probability density pXk|Θ(xk|θ). Assuming a uniform prior distribution
for Θk, the optimal parameter set has maximum likelihood parameter for the se-
quence xk. We write the resulting maximum likelihood model as

θ̂(xk) = argmax
θ

pXk|Θ(xk|θ). (2.4)
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While the maximum likelihood model minimizes the codeword length required for
the signal vector xk, the parameters θ̂(xk) of such a model can, in general, not be
encoded at a finite rate.

To make the rate required for the parameters finite, we restrict the set of allowed
parameter vectors to a countable set. The set {θ̄} of admissable parameter vectors
corresponds to the reconstruction vectors of a quantizer for the random parameter
vector Θ. Let pΘ̄(·) be the probability mass function for the countable set of al-
lowed parameter vectors {θ̄}. Then the codeword length required to describe the
model for θ̄ is

LΘ̄(θ̄) = − log(pΘ̄(θ̄)). (2.5)

The rate required to encode xk consists of the rate for the model and the rate for
encoding the sequence xk given the model:

L(xk) =LΘ̄(θ̄(xk)) + LXk|Θ̄(xk|θ̄(xk))

=− log(pΘ̄(θ̄(xk)))− log
(
pXk|Θ̄(xk|θ̄(xk))(D

C
)−

2
k
)

=ψ(θ̄(xk), θ̂(xk), xk)− log
(
pXk|Θ̂(xk|θ̂(xk))(D

C
)−

2
k
)

(2.6)

where

ψ(θ̄, θ̂, xk) = − log(pΘ̄(θ̄))− log

(
pXk|Θ̄(xk|θ̄)
pXk|Θ̂(xk|θ̂)

)
(2.7)

is the index of resolvability [2]. The index of resolvability collects the terms of
the overall rate that involve the quantized model parameters θ̄. The last term of
(2.6) is the rate required to encode the signal vector xk given the ideal (maximum-
likelihood) model θ̂.

The index of resolvability (2.7) consists of two terms that have a clear interpre-
tation. The first term represents the rate for the model parameters. The second term
is the increase in the rate for the signal xk resulting from using the non-optimal θ̄
instead of the optimal θ̂.

We are interested in the average performance for coding audio signal vectors
Xk. Thus, we average (2.6) over the random vector Xk. Let E[·] denote expecta-
tion over the ensemble of all audio signal vectors. The expected codeword length
for Xk is then

E[L(Xk)] = −E[ψ(θ̄(Xk), θ̂(Xk), Xk)]−E[log(pXk|Θ̂(Xk|θ̂(Xk)))]+
2
k

log(
D

C
).

(2.8)

The bit allocation for the model is determined by the mapping θ̄(xk). The optimal
bit allocation for the model θ̄ is the result of a trade-off between the rate required
for the model and the mean rate penalty resulting from using the quantized model
if the same distortion must be attained. This trade-off involves only the mean
index of resolvability (the first term of (2.8)). An important corrollary is that,
under the assumptions of our derivation, the optimal rate for the model parameters
is unaffected by the mean signal distortion D. The rate required for the model
parameters depends on the structure of the model and the statistical properties of
the data.

18



Table 2.1: Bit rates of the AMR-WB coder [7].

Rate 6.6 8.85 12.65 14.25 15.85 18.25 19.85 23.05
AR model parameters 36 46 46 46 46 46 46 46
pitch-model parameter 23 26 30 30 30 30 30 30

excitation 48 80 144 176 208 256 288 352

2.2.3 Application to Autoregressive Model

Autoregressive (AR) models are commonly used in speech coding and are becom-
ing more common for audio applications. This model class forms a natural first
application for the theory. Our goal is to describe the index of resolvability for
the constrained-entropy case in terms that are easily computed and interpreted. We
assume that the random signal vector Xk has a Gaussian multivariate distribution

pXk|Θ(xk|θ) =
1√

(2π)k det(Rθ)
exp

(
−1

2
xkTR−1

θ xk
)
, (2.9)

where Rθ is the model covariance matrix for Xk corresponding to the AR model
with parameters θ. To find the matrix Rθ, we model the random vector Xk as
a segment of a stationary AR process. This implies that the matrix is Toeplitz,
symmetric, and has as first column the autocovariance function of a signal gener-
ated with the AR model. The autocovariance function is the inverse discrete-time
Fourier transform of the transfer function of AR filter, which means the first col-
umn of Rθ is

Rθ(n, 0) =
1

2π

∫ 2π

0

σ2

|A(ejω)|2
ejnωdω, (2.10)

where σ2 is the excitation signal variance (gain) and A(z) = 1 + a1z
−1 · · · +

amz
−m for an m’th order AR model. The model parameters are then θ =

[σ2, a1, a2, · · · am].
As a first step towards obtaining the mean index of resolvability we determine

an expression for log(pXk|Θ(xk|θ)). We note that the factor multiplying the expo-
nential in (2.9) is, asymptotically with increasing k,

−1
2

log((2π)k det(Rθ)) ≈ −
k

2
log(2π)− k

2
1

2π

∫ 2π

0
log(Rθ(ejω))dω

= −k
2

log(2π)− k

2
log(σ2) (2.11)

where we used Szegö’s theorem and that Rθ(z) = σ2/|A(z)|2 and that since A(z)
is a monic minimum-phase polynomial

∫ 2π
0 log(|A(ejω)|2)dω = 0. We then con-

sider the argument of the exponential in (2.9). Let Rxk(ejω) be the Fourier trans-
form of the auto-covariance function of the segment xk. Then, again asymptoti-
cally with increasing k, we have

1
2k
xkTR−1

θ xk ≈ 1
4π

∫ 2π

0

Rxk(ejω)
Rθ(ejω)

dω. (2.12)

Thus, based on (2.11) and (2.12) we can approximate (2.9) as

log(pXk|Θ(xk|θ)) ≈ −k
2

log(2πσ2)− k

4π

∫ 2π

0

Rxk(ejω)
Rθ(ejω)

dω. (2.13)
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Ignoring scaling effects, the index of resolvability (2.7) is

ψ(θ̄, θ̂, xk) ≈− log(pΘ̄(θ̄))+

k

4π

∫ 2π

0

(
Rxk(ejω)
Rθ̄(ejω)

− Rxk(ejω)
Rθ̂(e

jω)

)
dω.

=− log(pΘ̄(θ̄))+

k

4π

∫ 2π

0

Rxk(ejω)
Rθ̂(e

jω)

(
Rθ̂(e

jω)
Rθ̄(ejω)

− 1

)
dω. (2.14)

Assuming that the effect of model quantization on the power spectrum is small, we
use the expansion u = 1 + log(u) + 1

2 log(u)2 · · · :

ψ(θ̄, θ̂, xk) ≈ − log(pΘ̄(θ̄))+
k

4π

∫ 2π

0

Rxk(ejω)
Rθ̂(e

jω)

(
log(

Rθ̂(e
jω)

Rθ̄(ejω)
) +

1
2

log(
Rθ̂(e

jω)
Rθ̄(ejω)

)2

)
dω.

(2.15)

The ratios R
xk

(ejω)

Rθ̄(ejω)
and Rθ̂(ejω)

Rθ̄(ejω)
represent the effect of modeling and the effect

of quantization respectively. The modeling ratio averages to unity for maximum
likelyhood gain. It is reasonable to assume that the effects of modeling and quan-
tization are independent and we can approximate

ψ(θ̄, θ̂, xk) ≈ − log(pΘ̄(θ̄))+
k

4π

∫ 2π

0

(
log(

Rθ̂(e
jω)

Rθ̄(ejω)
) +

1
2

log(
Rθ̂(e

jω)
Rθ̄(ejω)

)2

)
dω.

(2.16)

Neglecting the effect of gain quantization, (2.16) can be written as

ψ(θ̄, θ̂, xk) ≈ − log(pΘ̄(θ̄)) +
k

4π

∫ 2π

0

1
2

log(
Rθ̂(e

jω)
Rθ̄(ejω)

)2dω, (2.17)

where the second term is the well-known mean square log-spectral distortion mea-
sure, which is commonly used to evaluate the performance of prediction coefficient
quantizers, e.g., [8, 4].

By averaging the index of resolvability (2.17) over the ensemble of signal vec-
tors, we obtain the equation that governs the rate allocation for the model parame-
ters for the AR model

E[ψ(θ̄, θ̂, xk)] = R(Θ̄) +
k

4
D(Θ̄, Θ̂) (2.18)

with
R(Θ̄) = −E[log(pΘ̄(Θ̄))] (2.19)

and

D(Θ̄, Θ̂) = E

[
1

2π

∫ 2π

0
log(

RΘ̂(ejω)
RΘ̄(ejω)

)2dω

]
. (2.20)

We recognize in (2.18) a Lagrangian that minimizes the average rate for the
parameter vector quantizer under a constraint on the mean log spectral squared
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error. The Lagrange multiplier is k
4 . We can replace the mapping xk → θ̄ by the

simpler two-stage mapping xk → θ̂→ θ̄.
The model parameters describe a manifold in the log power spectral domain

with dimensionality d ≤ |Θ|. With increasing rate, the optimal constrained-
entropy quantizer is asymptotically uniform on this manifold in the log-power-
spectral domain. The performance of a high-rate constrained-entropy quantizer
using the square error and lying on the manifold scales with rate as

D(Θ̄, Θ̂) = dCe−
2
d

(R(Θ̄)−h(Θ̂)), (2.21)

where C is the coefficient of quantization, h(Θ̂) is the differential entropy of Θ̂ as
measured in the log power spectral domain. The objective is to find the model rate
R(Θ̄) that minimizes

E[ψ(θ̄, θ̂, xk)] = R(Θ̄) +
k

4
dCe−

2
d

(R(Θ̄)−h(Θ̂)), (2.22)

which is solved by the optimal model rate allocation

R(Θ̄) = h(Θ̂) +
d

2
log
(
k

2
C

)
. (2.23)

2.2.4 Results and Verification

The principles introduced in this section are of a general nature. We verify the prin-
ciples with applications to the coding of speech. The motivation for the selection
of the speech signal is that the AR model is commonly used in this context, which
means reasonable model choices are well understood. More-over, existing results
for standardized coders can provide a first indication of the principles derived here-
in.

Corroborative Earlier Results

The present section discusses the distribution of the bit rate for entropy-constrained
coding, which is common in audio coding. The results are essentially identical for
the case constrained-resolution coding. Practical results for constrained-resolution
display the correct behavior. Table 2.1 shows bit allocations used in the adaptive-
multirate wide-band (AMR-WB) speech coder [7]. It is seen that the bit allocation
for the model parameters is independent of the rate of the codec, except at low
rates. In contrast, the bit allocation for the excitation (the signal) increases rapidly
with the overall rate. These bit allocations confirm our theoretical findings.

2.2.5 Experimental Verification
The verification was performed for tenth-order AR modeling on 8 kHz sampled
speech. We used the TIMIT database [9].

We first estimated the differential entropy and the manifold dimensionality of
the random parameter vector θ, using the methods described in [10]. The dimen-
sionality of the manifold was found as d = 7.9 and the differential entropy was 8.5
bits. From (2.23) it then follows that the optimal rate for the model is 19.0 bits for
scalar quantization and 17.2 bits for vector quantization. The rates correspond to
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a root mean square log spectral distortion of 1.29 dB, close to the 1 dB commonly
used on heuristic grounds [4].

The second step of our verification work is to confirm that the mean of the
summation of model rate and signal rate is minimized using the measured rates for

E[L(xk)] = E[LΘ̄(θ̄(xk))] + E[LXk|Θ̄(xk|θ̄(xk))]. (2.24)

To confirm this, we measured the average rate that a coder operating on speech
requires for the speech signal, for a given speech-signal distortion and with vary-
ing quantization accuracy for the model parameters. To this purpose, we extracted
10000 randomly located speech blocks of 160 samples (20 ms) from the 1680 utter-
ance evaluation part of TIMIT. For each block we performed linear-predictive anal-
ysis (using a Hann window) to obtain a set of AR model parameters. To approxi-
mate optimal parameter quantization on the data manifold in the log spectral distor-
tion domain, we converted the parameters to the line-spectral frequencies (LSFs)
and computed the (diagonal) sensitivy matrix of the LSFs [11]. We then performed
scalar quantization of the scaled LSFs. We used these parameters to estimate the
bit allocation required for scalar quantization of the 40-dimensional speech vector
xk located in the center of the 160 sample block. The vector was first decorrelated
using a model-based Karhunen-Loève transform, then scalar quantized. The rate
was estimated using numerical integration of the probability density function over
the cell. We multiplied by four to get the rate for a stationary block of 160 samples,
approximating a common speech coder scenario.

In Fig. 2.1 we show the outcome of the experiments. It provides the overall
rate as a function of the rate allocated to the model for a range of distortions for
the signal. It is seen that at overall coding rates of about 2 to 5 bits per sample, the
overall coding rate is minimized when the model rate is about 20 bits. It is seen
that this rate is independent of the overall coding rate. As expected from heuristic
reasoning, the actual optimal model rate decreases when the signal distortion is
high and the overall rate falls below the range of rates where the theory is valid.

2.2.6 Conclusions

In this section we considered the coding of signal segments with a model. We con-
cluded that with increasing rate the rate allocation for the model becomes a con-
stant and is independent of the overall rate allocation. An existing speech coding
standard and our own experimental confirm the theoretical results. We conclude
that our method can be used to predict the optimal model coding rate. For the
AR model, our approach leads to the commonly used squared log spectral distor-
tion measure for the prediction parameters. More-over, we can conclude that the
required accuracy of the AR parameters is not a direct function of perceptual ef-
fects. Our results mean that audio (as well as other source) coders that adapt in
real-time to changing network conditions can use a fixed quantizer for the signal
model parameters.
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2.3 Model-based bit plane coding

2.3.1 Introduction

Model-based coding has already shown promising results for the quantization of
linear predictive coding (LPC) coefficients [1], autoregressive waveform coding of
speech [2], audio transform coding [3] and entropy-constrained vector quantization
[4]. In this section we show that a similar statistical modeling approach can be used
in bit plane coding.

Bit plane coding is an entropy coding method wherein an integer sequence is
decomposed in bit planes from most significant bits (MSB) to least significant bits
(LSB). It is used for instance in audio and image coding, see MPEG-4 BSAC [5],
proprietary audio coders [6, 7], and JPEG2000 [8]. The bitstream associated with
bit plane coding is scalable (or embedded) in the sense that it allows simple rate
adaptation by truncation and decoding of partially received coded data. This flex-
ibility is particularly attractive for communications over heterogenous networks
[9].

Model-based bit plane coding consists in estimating the symbol probability in
bit planes based on a pdf model for the underlying source. Specifically we consider
here the problem of coding of a source X = [x1 x2 . . . xN ]. After uniform scalar
quantization with stepsize q, we obtain an integer sequence Y = [y1 y2 . . . yN ],
with yi = [xi/q], where [.] is the rounding to the nearest integer. Bit plane coding
is applied to Y.

In the following the probability density function (pdf) of X is approximated by
a generalized Gaussian model (also called super-Gaussian). Other pdf models may
be applied.

2.3.2 Bit plane decomposition of an integer sequence

The sign-magnitude representation of an integer sequence Y = [y1 y2 . . . yN ] of
length N is defined as:

yi = (−1)sign(yi)|yi| (2.25)

where sign(yi) is the sign bit associated with yi, with the convention

sign(yi) =
{

1 if yi < 0
0 if yi ≥ 0

, (2.26)

and each magnitude (absolute value) |yi| is written in natural binary format

|yi| =
K−1∑
k=0

bitk(yi).2k (2.27)

with bitk(yi) being the kth bit of the natural binary decomposition of |yi| andK the
number of bit planes needed to decompose the complete sequence Y. The number
K is given by:

K = max
(
dlog2 max

i=1,...,N
|yi|e, 1

)
(2.28)

where d·e is the rounding to the nearest integer towards +∞ and log2(0) = −∞.
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Note that for the sake of simplicity bitk(yi) corresponds here to the natural
binary representation of integers. Other representations such as Gray coding or
reflected Gray coding, one’s complement, two’s complement, may be used.

Using the above sign-magnitude representation, the k-th bit plane of Y, k =
0, . . . ,K − 1, is defined as:

Pk(Y) = [bitk(y1) bitk(y2) . . . bitk(yN )], (2.29)

while an additional bit plane can be defined to gather all sign bits:

S(Y) = [sign(y1) sign(y2) . . . sign(yN )]. (2.30)

The bit planes PK−1(Y) and P0(Y) correspond to the most significant bits (MSB)
and least significant bits (LSB), respectively.

2.3.3 Bit plane coding principle

Bit plane coding usually proceeds from MSB to LSB, from more important to less
important data. If the underlying error criteria is the mean square error criterion
bit planes Pk(Y) are coded sequentially from k = K − 1 to k = 0 in accordance
with the reverse waterfilling principle [10]. However, if perceptual criteria are
incoporated, the parsing of bit planes may be non-sequential.

Note that magnitude and sign coding are usually intertwined:

• The sign bit sign(yi), i = 1, . . . , N , is transmitted only if |yi| 6= 0.

• To allow decoding partially received coded data, sign(yi) is transmitted as
soon as one of the bits {bitk(yi)}k=0,...,K−1 is equal to one and has just been
coded.

A simplified algorithm for bit plane coding is given below:

for k = K − 1 to 0 do {Loop from MSB to LSB}
for n = 1 to N do
<code> bitk(yi)
if bitk(yi) = 1 AND sign(yi) is not yet coded then
<code> sign(yi)

end if
end for

end for

Any coding method <code> may be used to code bits bitk(yi) and sign(yi).
Adaptive and/or context-based arithmetic coding [11, 12] is often used for this
purpose.

2.3.4 Bit plane coding based on a pdf model of the source

Preliminary: generalized Gaussian pdf model

The pdf of a zero-mean generalized Gaussian random variable x of standard devi-
ation σ is given by:

gσ,α(x) =
A(α)
σ

e−|B(α)x/σ|α , (2.31)
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where α is a shape parameter describing the decay rate of the density function,

A(α) =
αB(α)

2Γ(1/α)
and B(α) =

√
Γ(3/α)
Γ(1/α)

, (2.32)

with

Γ(α) =
∫ ∞

0
e−ttα+1 dt. (2.33)

Note that the special cases α = 1 and 2 correspond to the Laplacian and Gaussian
distributions, respectively.

In order to estimate the shape parameter α many procedures can be used, see
for instance [13].

Model-based estimation of probabilities for entropy coding of bit planes

The integer sequence Y = [y1 y2 . . . yN ] is obtained from uniform scalar quan-
tization of X = [x1 x2 . . . xN ] with stepsize q:

yi =
[
xi
q

]
, (2.34)

where [.] is the rounding to the nearest integer.
Assuming X is a realization of a zero-mean generalized Gaussian random vari-

able of variance σ, the probability of yi is given by [14]:

p(yi) =
∫ qyi+q/2

qyi−q/2
gσ,α(x)dx (2.35)

where q is the stepsize and gσ,α(x) is the p.d.f. defined in Eq. 2.31. Without loss
of generality, the source X can be normalized to a unit variance so that the stepsize
can be normalized to q/σ and σ is normalized to 1.

To be more specific, given the above model for the pdf of X and the resulting
probability model for p(|yi|), the probability of having the bitk(yi) equal to zero
can be estimated as follows:

p(bitk(yi) = 0) = p(|yi|)× δbitk(yi),0 (2.36)

with

δx,y =
{

1 if x = y
0 if x 6= y

Note that Eq. 2.36 is valid only for the natural binary decomposition.
It is also assumed that number of bit planes K is sent as side information to the

decoder, so that the decoder can estimate properly p(yi). Based on this assumption,
the a priori information |yi| ≤M can be used, so the probability of having zero in
bit plane Pk(Y) is given by [14]:

p(bk = 0| |yi| ≤M) =
p(bitk(yi) = 0, |yi| ≤M)

p(|yi| ≤M)
(2.37)
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Figure 2.2: Principle of model-based probability estimation for bit plane coding.

where bk = bitk(yi) for any 1 ≤ i ≤ N and

p(|yi| ≤M) =
M∑

yi=−M
p(yi| |yi| ≤M) =

∫ q(M+1/2)

−q(M+1/2)
gσ,α(x)dx (2.38)

Therefore:

p(bk = 0 | |yi| ≤M) =

M∑
yi=−M

p(yi)× δbitk(yi),0

M∑
yi=−M

p(yi)

(2.39)

The probability of having one in bit plane Pk(Y) can be obtained from the
relationship:

p(bk = 0 | |yi| ≤M) + p(bk = 1 | |yi| ≤M) = 1 (2.40)

The estimation of p(bk = 0 | |yi| ≤M) is illustrated in Fig. 2.2.
The above model-based probability estimation relies on several assumptions:

• The source X is i.i.d and has a generalized Gaussian p.d.f.

• The numberK of bit planes is transmitted as side information to the decoder

• Bit planes Pk(Y) are coded independently from each other

This yields the following algorithm:
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Require: Transmit the number of bit planes K as side information and compute
M = 2K − 1
Estimate shape parameter α given [x1 x2 . . . xN ]
Calculate probabilities p(yi), i = 0, · · · ,M using Eq. 2.35
for k = K − 1 to 0 do {Loop from MSB to LSB}

Calculate p(bk = 0 | |yi| ≤M) according to Eq. 2.39
Calculate p(bk = 1 | |yi| ≤M) using Eq. 2.40
for n = 1 to N do
<entropy code> bitk(yi) based on p(bk | |yi| ≤M)
if bitk(yi) = 1 AND sign(yi) is not yet coded then
<code> sign(yi)

end if
end for

end for

Generalization to context-based bit plane coding The coding of bit planes
Pk(Y) with k < K − 1 following the MSB may use the available knowledge
of bit planes, PK−1(Y) . . .Pk+1(Y), that have already been (de)coded.

In this generalization, the MSB is coded with model-based probability estima-
tion as discussed previously. Exploiting the assumption of an i.i.d. generalized
Gaussian model, the usable conditional information (context) for bitk(yi) is lim-
ited to the knowledge of bitk+1(yi), · · · , bitK−1(yi). For more details, see [14].

Results

WB-PESQ [15] was used to evaluate objectively the quality of an example trans-
form audio coder using bit plane coding. Only clean speech sentences sampled at
16 kHz are used to compute the average WB-PESQ (MOS-LQO) scores at various
bit rates (from 16 to 40 kbit/s). Note that for bit plane coding the encoder operated
at maximal bit rate (40 kbit/s), while the decoder bitrate was equal to or lower than
the encoder bitrate.

Figure 2.3 shows the WB-PESQ scores for transform audio coding using bit
plane coding (basic or model-based) compared to two reference coders (stack-run
coding [3] and ITU-T G.722.1). It appears that the use of model-based probability
estimation improves the performance of bit plane coding.

Note that bit plane coding requires virtually no storage.

2.3.5 Conclusions

A complete model-based method for transform coding of audio signals can be
found in [14], where the input signal is mapped in perceptual domain by linear-
predictive weighting filtering followed by modified discrete cosine transform
(MDCT). In this framework model-based bit plane coding brings an improvement
compared with basic bit plane coding based on adaptive arithmetic coding, and
allows to close the gap between bit plane coding and non-embedded (monolithic)
entropy coding [14].
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Figure 2.3: Average WB-PESQ score of transform audio coding with (basic or
model-based) bit plane coding – Comparison with stack-run coding
and ITU-T G.722.1.
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2.4 Multi-Mode Excitation Reconstruction Scheme for
Improved Coding of Audio

2.4.1 Introduction

In the FlexCode concept the source coder should adapt to continuously varying
bit-budget and source statistics. With the decrease of a bitrate (and/or increase of
signal bandwidth) it is more efficient to encode only important parts of the sig-
nal and generate the remaining parts, e.g., [1, 2, 3, 4]. The conventional solution
is to quantize low-frequency regions and reconstruct high-frequency regions of
the spectra. All bits are allocated to the frequency components below pre-defined
frequency index, and at the decoder the remaining (unquantized) components are
reconstructed from the quantized ones. This approach is static, and the quantiza-
tion and reconstruction regions are pre-determined, but might not be optimal under
changes of bitrate or input source characteristics.

A more advanced solution, suitable for variable bit rates, is to dynamically de-
tect the regions to be quantized and regions to be reconstructed. In [5] the fre-
quency bands are ordered accordingly to the perceptual importance of the corre-
sponding part of spectrum envelope. The regions with higher energy are quantized,
and used to reconstruct the remaining part of the signal.This approach guarantees
that the most important regions are quantized, but has no control over the level
of artifacts introduced with signal reconstruction. As the fine structure continu-
ity is not preserved, this approach can potentially create artifacts related to pitch
discontinuities.

In general, none of the approaches presented above searches for the optimal
point between quantization errors in the low-frequency and reconstruction artifacts
in the high-frequency spectral regions. In this section we present an improved
scheme for audio coding. This scheme in an optimal way selects the range of
frequencies to be quantized and the range of frequencies to be reconstructed from
the quantized ones.

2.4.2 The Framework

First we present a coding framework, in which the proposed multi-mode residual
quantization is used. Typically in audio coding, short segments of signal are first
transformed to a new domain, then encoded and transmitted, and finally the signal
is inversely transformed and reconstructed at the decoder. For the simplicity of
presentation we constrained our transform coding scheme to be modified discrete
cosine transform (MDCT) [6, 7], and will refer to transform coefficients as MDCT
coefficients.

To increase the compression efficiency, the transform coefficients are first flat-
tened by the spectrum envelope, and then quantized. These flattened-quantized
coefficients, together with a quantized version of the spectral envelope are trans-
mitted to the decoder, and the signal is reconstructed. In the following we shall
refer to the flattened coefficients as residual MDCT vector. There are few different
ways to define the spectral envelope. In [8] the spectrum envelope is calculated
through frequency response of autoregressive (AR) coefficients. In [9] and [10] the
spectrum envelope is calculated through grouping MDCT coefficients and calcu-
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lating the mean energy in each group. These groups can be of uniform length [10],
or the length can increase towards high-frequency [9]. Our study on the multi-
mode excitation reconstruction is in the framework, similar to [8]. Block-scheme
of the encoder is presented in Fig. 2.4. The windowed signal block s is analyzed
to extract the AR coefficients, and then MDCT transformed. The MDCT coeffi-
cients, denoted d are flattened by the AR spectrum envelope PAR to form residual
signal dn. The overall gain G scales the variance of the residual signal to unity.
This residual signal is encoded by means of companding, followed by uniform
scalar quantizers (SQ). The autoregressive coefficients are independently encoded
by means of Gaussian mixture model vector quantizer (GMM-VQ) [11]. The tech-
nology, presented in this section, is about efficient quantization/reconstruction of
residual signal dn.

Figure 2.4: MDCT coding scheme with AR spectral envelope, and SQ of the
residual.

2.4.3 Multi-Mode Scheme Excitation Reconstruction

In the proposed scheme the MDCT residual is encoded in different codec modes.
The winning mode is selected as the one that minimizes a pre-defined criterion. In
all modes continuous parts of the spectrum (all starting at lowest-frequency com-
ponent, but of different length) are quantized, regardless of the energy of the spec-
trum envelope. The modes that quantize a short part (and therefore reconstruct a
large part) of the vector can achieve high-quality at low-frequencies at a cost of
increased number of artifacts in high-frequency regions. The modes that quantize
a large part (and therefore reconstruct a short part) of the vector avoid artifacts
in high-frequencies, but cannot achieve sufficient quality at low-frequencies. De-
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pending on the bitrate and signal self-similarity, different modes can give the best
trade-off between low- and high-frequency distortions. Note that in practice the
quantized regions are not used directly to reconstruct the remaining regions, but
reconstruction is done through a virtual codebook technique, described in the next
section.

One particular four-mode implementation of this scheme is presented in Fig.
2.5. When the codec is in mode A) the entire residual vector is quantized, thus the
available bits are spread over the entire dimension. In mode D) all bits are spent
for quantization of the lower-quarter of the vector, and the remaining frequencies
are reconstructed. In general, with decreasing the bit-budget the preference of the
modes goes from A to D, as human perception is sensitive to fine-structure errors in
low-frequency regions. If enough bits are available, and the low-frequency regions
are quantized with sufficient resolution, the preferred modes will be A and B. With
increasing the self-similarity of the signal, the preference goes from A to D, as
the process of reconstruction introduces less artifacts. By searching through all
modes the systems balances between high resolution quantization of low-frequency
regions, and introducing artifacts in high-frequency regions.

Figure 2.5: Example of 4 competing modes for residual quantization. The quan-
tized regions are in green-solid, while the reconstructed regions are in
red-dashed. The length of the residual vector is denoted by L.

2.4.4 Implementation

Critical point in the algorithm is the decision criterion that selects the optimal mode
for residual quantization. The mode selection is defined as a minimization prob-
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lem:
y∗ = arg min

k
D(x, yk), (2.41)

where k is the index over all modes, x is residual reference MDCT vector, and y -
quantized residual MDCT vector from the reconstruction codebook. The distortion
D(·) is calculated as follows: As a first step the sign is removed from both vectors
and they are smoothed

Xn = (1− αn)|xn|+ αn Xn−1, (2.42)

Yn = (1− αn)|yn|+ αn Yn−1. (2.43)

Here the index n ∈ {1 . . . L} is over the entire vector dimension, and |·| denotes the
absolute value. The weight is not constant, but increases towards high-frequencies

αn =
(n
L

)6
. (2.44)

Figure 2.6: Frequency dependent weighting factor.

This weighting scheme makes the contribution of the fine structure information
from the high-frequencies less important, while preserving sufficient resolution in
the low-frequencies. After the pre-processing step a sign-difference is calculated
over the residual vectors:

D =
1
L

L∑
n=1

(Yn −Xn)β , (2.45)

β =
{

4 if (Yn −Xn) ≥ 0
2 if (Yn −Xn) < 0,
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Such a sign-difference adds heavier penalty for "new" spectral components, and
less for "missing" spectral components. This is motivated by the fact that the hu-
man brain can partly interpolate the missing spectral components, thus making
certain distortion less objectionable.

As mentioned earlier the quantized residual coefficients are not used directly
to reconstruct the remaining high-frequency regions, but they are first processed
to create a reconstruction codebook. Such a processing consists of two steps: 1)
compression of coefficients with 10% largest absolute values (see Fig. 2.7), and
2) overall energy attenuation of 30%. Such a procedure removes outliers that can

Figure 2.7: The compression procedure attenuates the coefficient with 10% largest
absolute values, to the highest level, among the remaining 90% lowest
energy coefficients. Only the absolute values of residual coefficients
are presented in the figure.

cause annoying perceptual artifacts, but leads to energy loss in the high-frequency
regions of the reconstructed signal. Tilt correction postfilters can be used to com-
pensate for such effect. One possibility is to use postfilter of the form:

Ht(z) = 1− µ z−1, (2.46)

that is controlled by the parameter µ with a typical value µ = 0.4. Different choice
of tilt correction postfilter is:

Ht(z) = α z−1 − β + α z+1, (2.47)

with suitable values for the parameter α = 0.0825 and β = 0.5825. Naturally the
choice of tilt correction, and value of control parameters, depend on the decoder
design, and particularly on other postfiltering schemes, used at the decoder.
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2.4.5 Advantages of the Multi-Mode Scheme

The multi-mode residual quantization offers an improved quality in transform au-
dio coding schemes. The improvement comes through selection of the optimal
mode, for the current bitrate and input source characteristics. In the following all
simulations are performed with the coding scheme from Fig. 2.4, and wideband
sources. Tables 2.2 and 2.3 provide statistics of the model occurrence (% of frames
for which a particular mode is selected) with bitrate and source type. One can eas-
ily notice that the optimal size of quantized (and respectively reconstructed) region
is not only a function of the bitrate, but also varies with the source.

Table 2.2: Mode occurrence with bitrate and source type - Speech, German male
A B C D

12 kb/s 4.8 % 14.6 % 11.3 % 69.4 %
22 kb/s 16.7 % 7.9 % 26.3 % 49.2 %
32 kb/s 15.2 % 16.7 % 51.8 % 16.4 %

Table 2.3: Mode occurrence with bitrate and source type - Music, Castanets
A B C D

12 kb/s 3.4 % 4.2 % 6.3 % 86.1 %
22 kb/s 3.6 % 24.5 % 35.7 % 36.2 %
32 kb/s 3.2 % 55.7 % 36.9 % 4.2 %

Results from objective evaluation with the state-of-the-art and ITU-T standard
for quality assessment of wideband speech [12] are presented in Table 2.4. Results
from the proposed dynamic scheme are under Multi-mode scheme, while the last
two columns of the table represent two implementations of the same codec, but
with fixed size of quantization/recostruction regions. It is easy to see that the pro-
posed scheme gives a superior performance, which is also confirmed in informal
listening tests.

Table 2.4: Overall quality improvement of the multi-mode scheme in comparison
with the conventional solutions - WB-PESQ
Multi-mode scheme Quantize entire spectrum Quantize lower-half

12 kb/s 3.528 3.387 3.399
22 kb/s 3.819 3.592 3.739
32 kb/s 3.876 3.775 3.864
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2.5 Lattice Quantization

Lattice quantization has attracted interest of the lossless compression community
during the last years due to its reduced memory requirements for storage and low
complexity encoding and decoding algorithms.

Within the FlexCode, lattice quantization techniques will be employed both for
the signal model and for the transform coefficients in rate constrained as well as
entropy constrained framework.

2.5.1 Introduction

Most of the lattice based coding methods rely on fixed rate coding or on a semi-
variable rate coding where the vector to be quantized is split in several sub-blocks
for which the rate is variable, but the overall bit rate for the global vector is fixed
[1]. There exist also variable rate encoding of lattice codevectors. Most of these
methods rely on the grouping of codevectors on classes such as leader classes or
shells [2] or apply directly entropy coding methods to the lattice codevector com-
ponents [3].

In order to preserve the flexibility brought by the Gaussian mixture models [3],
[4], the use of the lattice quantization within the FlexCode had to be restricted to
generalized rectangular lattice truncations, which make straightforward the com-
bination of the mixture models and the companded lattice quantization. An ad-
ditional advantage of this type of truncation consists of the very low complexity
algorithms related to it.

In the subsequent parts of this section we define first the generalized rectan-
gular truncation. The use of a lattice as a quantizer is intrinsically linked to the
existence of an indexing algorithm of the lattice points. The presentation of ade-
quate new indexing algorithms make the subject of the second part. The primary
tools being established, the report will focus further on their use in rate and entropy
constrained coding algorithms by presenting newly introduced coding techniques
based on lattice rotation and new ways of lattice entropy encoding.

2.5.2 Rectangular Lattice Truncation

A rectangular truncation of norm K of the lattice Λ is defined as [5]:

ΛK =
{
x = (x1, x2, . . . , xn) ∈ Λ |N(x) ≤ K

}
(2.48)

where the n-dimensional real vector (x1, x2, . . . , xn) belongs to the lattice Λ.
A generalization of the above formula is so-called generalized rectangular trun-

cation that has different maximum absolute norms, {Ki}i=1:n along different di-
mensions.

ΛKi =
{
x = (x1, x2, . . . , xn) ∈ Λ ||xi| ≤ Ki

}
. (2.49)

We have tested the use of the generalized rectangular Dn lattice truncation on
data consisting of 16-dimensional line spectral frequencies (LSF) vectors of audio
signals. Gaussian mixture models are used and each input vector is presumed to
belong to a given mixture component, companded accordingly and quantized in
the rectangular lattice truncation. To each mixture component a bit allocation per
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Method SD[dB]
Uniform scalar quantization 0.88
Lattice quantization with D4 0.66
Lattice quantization with D8 0.63
Lattice quantization with D16 0.70

Table 2.5: Spectral distortion values for uniform scalar and lattice quantization.

component is assigned through a reversed water filling algorithm. The number
of levels derived from the bit allocation for each dimension is proportional to the
size of the truncation of the lattice on the corresponding dimension. There are 16
mixture components and the one having the smallest distortion is selected and its
index encoded.

The results in terms of spectral distortion (SD) are presented in Table 2.5. Dif-
ferent values for the lattice dimension are allowed by grouping the input vector
components into 4, 8, or 16 dimensional sub-vectors. Also the result obtained with
uniform scalar quantization is presented.

The use of the lattice quantizer improves the spectral distortion by 20% to 28%,
depending on the lattice dimension. The 16 dimensional lattice does not give the
best results, as could have been expected by increasing the dimension of the vector
quantizer, because in 16 dimensions the lattice Dn is not one of the most efficient
in terms of the second order normalized moment [6].

2.5.3 Indexing of Rectangular Lattice Truncations

We will consider in the following the Zn lattice. The same maximum norm along
all the dimensions will be assumed in the following algorithms, but generalization
to the different norm case is straightforward. The exterior shell of the truncation is
formed by the points:

ΛK =
{
x = (x1, x2, . . . , xn) ∈ Λ |N(x) = K

}
. (2.50)

This section presents two indexing algorithms for rectangular lattice trunca-
tions, for lattices that can be represented as union of co-sets of Zn. These algo-
rithms are discussed in more detail in [7].

The lattice points within the truncation can be indexed considering all the trun-
cation at once, or considering it shell by shell. The former case corresponds to the
first indexing algorithm, while the latter corresponds to the second one.

Base Representation Indexing (IA1)

This is one of the most natural indexing algorithms for points situated in a rectan-
gular truncation of an integer lattice Zn and it relies on the observation that on each
of the n dimensions there are (2K + 1) possible values, where K is the maximum
absolute norm of the truncation.

The indexing algorithm using base representation is presented next.
Coding algorithm
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Input: n-dimensional integer vector (x1, x2, . . . , xn) having maximum abso-
lute norm equal to K

Output: integer index, I(1)

I(1) =
n∑
i=1

(2K + 1)(i−1)(xi +K) (2.51)

Decoding algorithm:
Input: integer index, I(1)

Output: n-dimensional integer vector having maximum absolute norm equal
to K

Represent the index in the base (2K + 1).

Product Code Indexing (IA2)

In [8] the use of a product code type index in which at least the sign bits are sep-
arated has shown to have good error resilience performance. Using a similar ap-
proach, we divide the information contained in the codevector into several entities
appropriate to the rectangular truncation:

• The number of the significant (non zero) components (A);

• The number of maximum valued components (in absolute value) (B);

• The position of the maximum valued components (C);

• The values of the significant non-maximum components (D);

• The position of the significant non maximum values (E);

• The signs of the significant components (F).

The borders between the bits corresponding to different entities that form the index
are not strict, except for the bits corresponding to the signs. The strict border of the
sign bits is due to the fact that they are situated at an extreme of the index and the
cardinality of the set describing all the sign combinations is a power of two. The
indexing corresponding to the bits ordering A / B / C / D / E F is presented in
the next subsection. The delimiter “|” represents a strict border.

Coding algorithm: Input: n-dimensional integer vector having maximum ab-
solute norm equal to K

Output: integer index, I(2)

1. Count the number of significant (non-zero) components in the vector, S;

2. Calculate the offset

O
(2)
0 (S) =

S+1∑
i=n

Ti =
S+1∑
i=n

2i
(
n

i

)(
Ki − (K − 1)i

)
;

3. Count the number of maximum components, in absolute value, i.e. having
the absolute value equal to K, M ;
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4. Calculate

O
(2)
1 (S,M) = 2S

(
n

S

)M+1∑
i=S

(
S

i

)
(K − 1)(S−i);

5. Calculate the position index, relative to the whole vector length, of the max-
imum components, Ik;

6. Calculate the order index of non-maximum significant components, Ink;

7. Calculate the position index relative to the length of the vector without max-
imum components, of the non-maximum significant components, Ipos_nk;

8. Calculate the index of sign bits, IB;

9. Calculate the index

I(2) = O
(2)
0 (S) +O

(2)
1 (S,M) +

+Ik2S
(
n−M
S −M

)
(K − 1)S−M +

+Ink2S
(
n−M
S −M

)
+ Ipos_nk2S + IB. (2.52)

The index IB is obtained then as:

IB =
S∑
i=1

bi2i−1,

where bi is 0 if the i-th significant component is negative and 1 otherwise.
Decoding algorithm
Input: integer index, I(2)

Output: n-dimensional integer vector having maximum absolute norm equal
to K

1. Calculate the number of significant components, S, such that O(2)
0 (S−1) >

I(2) ≥ O(2)
1 (S,M);

2. Update the index I(2) = I(2) −O(2)
0 (S);

3. Calculate the number of maximum components, in absolute value, M , such
that O(2)

1 (S,M − 1) > I(2) > O
(2)
1 (S,M);

4. Update the index I(2) = I(2) −O(2)
1 (S,M);

5. Calculate

Ik =
⌊
I(2)/

(
2S
(
n−M
S −M

)
(K − 1)S−M

)⌋
and

I(2) = I(2) mod
(

2S
(
n−M
S −M

)
(K − 1)S−M

)
;
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6. Decode Ik to obtain the position of the maximum valued components within
the whole vector;

7. Calculate

Ink =
⌊
I(2)/

(
2S
(
n−M
S −M

))⌋
and

I(2) = I(2) mod
(

2S
(
n−M
S −M

))
;

8. Decode Ink to find the value of the non maximum values (less than K in
absolute value);

9. Calculate Ipos_nk = bI(2)/2Sc and

IB = I(2) mod 2S ;

10. Decode Ipos_nk to find the position of the non maximum values within the
whole vector without the maximum values;

11. Decode IB to the sign bits.

The encoding and decoding of the positions is done using the enumeration al-
gorithm for the binomial coefficients presented in [2]. In this approach, the input of
the enumeration algorithm may be for example the vector z = (z1, z2, . . . , zn) ∈
{0, 1}n such that there are exactly M unitary components in the vector, at posi-
tions corresponding to the positions of maximum valued components in the code-
vector. Additionally, a position vector p = (p0, . . . , pM−1) ∈ {0, . . . , n − 1}M is
created, which specifies the exact location of each of the maximum valued com-
ponent. Since there are

(
n
M

)
such z vectors, they can be enumerated like binomial

coefficients following the algorithm given by the next equations:

Ipos(n,M, p) =
p0∑
i=1

(
n− i
M − 1

)
+

Ipos(n− p0 − 1,M − 1,
(p1, . . . , pM−1)− p0 − 1) (2.53)

and Ipos(n′, 1, [i]) = i, 0 ≤ n′ ≤ n. Ipos can then be used as the desired position
index Ik or Ipos_nk.

To recover the position vector p from an index Ipos, the following algorithm
may be used:

1. i = 0

2. while (M > 0){

• find j such that
∑j

i=1

(
n−i
M−1

)
≤ Ipos <

∑j+1
i=1

(
n−i
M−1

)
• pi = j

• Ipos = Ipos −
∑j

i=1

(
n−i
M−1

)
• n = n− j − 1
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• M = M − 1

• i = i+ 1

}

The vector z may then be recovered by inserting the value 1 at the positions
indicated in the vector p and the value 0 at all the other positions.

The encoding of the non maximum valued components is done using the base
representation algorithm IA1.

2.5.4 Entropy Constrained Lattice Quantization

The advantages of the entropy constrained coding over the resolution constrained
coding are due to a better adaptation to the local statistics of the source. These,
together with the low complexity of the quantization even for high dimensional
spaces, when using lattice based tools, make the lattice entropy constrained tool a
very attractive approach.

Entropy constrained methods using lattice quantizers have been previously pre-
sented in the literature. Most of these methods rely on the grouping of codevectors
in classes such as leader classes or shells [2] or apply directly entropy coding meth-
ods to the lattice codevector components [3]. However the former method becomes
less practical when the number of classes increases (with the increase of the bit rate
and for some of the truncation shapes), while the latter is from the start less effi-
cient than a direct entropy coding of the lattice vectors indexes, but obviously less
complex.

We present in this section a new indexing method for lattice vectors that makes
use of the product code indexing method presented in the previous section. The
proposed method is exemplified on rectangular truncation of lattices, where the
number of leader classes is relatively high and the shape of the truncation is suc-
cessfully used in conjunction with companding.

The different informational entities extracted from the vector, can be also in-
terpreted as means of classifying the vectors into different sets. The existence of
several entities implies the division of all the vectors into sets, sub-sets and so
forth. If the index corresponding to all or part of the set (subset) types are entropy
encoded, an entropy code can be obtained for the initial lattice vector.

For instance, given the 4 dimensional vector (2 -3 0 -1), having maximum norm
equal to 3, it has three significant components (A), one maximum valued compo-
nent (B), index 1 for the position of the maximum valued component (C) and index
1 for the position of the non maximum valued components (E) (see [7]). There is
at least one significant value and four at the most, therefore there are four possible
symbols for the number of significant components, which can be entropy encoded.
Furthermore, the number of maximum valued components can be entropy encoded,
as well as the position indexes of the maximum valued components and so on.

The practical interest of the proposed method becomes evident if we consider,
for instance, that there are 16 dimensional lattice points to be entropy encoded, at a
bit-rate of 2 bits per sample. The probabilities for 22·16 symbols should be stored,
whereas if one lattice point index is split into several different types of data the
variability of symbols considered in the entropy coding is reduced, assuming that
there are different entropy encoders for the different types of information.
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Bit Rate Calculation

Consider the n-dimensional vectors from the Zn rectangular truncation of normK.
Any vector from this set can be represented using N0 bits, where

N0 = dlog2((2K + 1)n)e. (2.54)

If the entity corresponding to the number of significant values is entropy en-
coded on n1 bits, the current vector from the set of vectors can be represented on
N1 bits instead of N0, where

N1 = n1 +
⌈

log2

(
2S
((n

1

)(
n− 1
S − 1

)
(K − 1)S−1 +(

n

2

)(
n− 2
S − 2

)
(K − 1)S−2 + ...+

(
n

S

)))⌉
, (2.55)

S is the number of significant components.
If the number of significant components is entropy encoded on n1 bits, the num-

ber of maximum valued components is encoded on n2 and the index of positions
for the maximum valued components is encoded on n3 bits then the current vector
from the set of vectors can be represented on N3 bits, where

N3 = n1 + n2 + n3 +⌈
log2

(
2S
(
n−M
S −M

)
(K − 1)S−M

)⌉
(2.56)

and M is the number of maximum valued components whose position is already
coded on n3 bits.

The presented method can provide bit-rate savings up to 30% from the bit-rate
allocated to the spectral coefficients within an audio coding scenario, with respect
to the fixed rate lattice quantization. In addition to the improved compression effi-
ciency, the proposed method enables the use of lattice entropy encoding in higher
dimensions.

2.5.5 Lattice Rotation for Low Bit-rate Quantization

At moderate bit-rates (below 2 bits per sample), for non-symmetric sources, or
data having vanishing directions, lattice border effects are significant and the rate
distortion curves depend on the orientation of the lattice truncation.

Therefore, if the lattice is rotated such that the denser direction corresponds to
the denser direction in the data implying that the rate distortion performance can
be improved.

Figure 2.8 presents rate-distortion curves for Z2 andA2 lattices for independent
Gaussian sources with same standard deviation on both directions, for different
lattice rotation angles. As expected, there is just one curve for each of the lattices,
and the performance of the lattice A2 is better. Entropy constrained coding is
considered and H is the experimental entropy of the codewords.

When the sources have no longer a symmetric probability density function, the
rate-distortion curves are sensitive to the angle of rotation of the lattice like proved
in the figures 2.9 and 2.10. In addition, by comparing the two figures, it can be
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Figure 2.8: Rate distortion functions for Z2 and A2 lattices for non-correlated
Gaussian sources with same standard deviation on both directions.
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Figure 2.9: Rate distortion functions for rotated A2 lattices for Gaussian corre-
lated sources with correlation coefficient 0.9.

observed that the optimally rotated Z2 lattice gives better performance than the
optimally rotated A2 lattice.

The lattice rotation in conjunction with the proposed entropy constrained
method will be used for the coding of the transform coefficients within the
FlexCode.
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Figure 2.10: Rate distortion functions for rotated Z2 lattices for Gaussian corre-
lated sources with correlation coefficient 0.9.

2.5.6 Conclusions

Lattice quantizers provide practical non-complex ways of vector quantization that
are known to have better performance than the scalar quantizers. In addition, the
proposed lattice rotation techniques enable efficient use of the structured quantizers
for moderate and low bit-rates, providing for the FlexCode codec the coverage of
a larger bit-rate domain. The proposed entropy coding methods enable the use
of lattice quantizers for higher dimensions, in the context of entropy constrained
coding.
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2.6 Perceptual Modeling

Multidimensional perceptual companding offers the flexibility required in Flex-
Code to integrate perceptual distortion. The reason lies in the effective decoupling
of perceptual aspects from quantization and coding. This section shows how Flex-
Code achieves perceptually optimal coding by using perceptual companding fol-
lowed by squared error optimal quantization. Furthermore, we provide a solution
that exploits the redundancy between the signal model and the perceptual model.

2.6.1 Introduction

Present perceptual coding schemes do not offer flexibility in the way perceptual
distortion measures are integrated into the coder. For instance, AAC [1] uses an
iterative, heuristic Analysis-by-Synthesis loop guided by the perceptual model to
obtain weighting coefficients (scale factors) for the MDCT-transformed input sig-
nal. This input signal is then quantized and Huffman coded. The inflexibility lies in
the latter: these Huffman tables are carefully trained and tuned and depend not only
on the data used for tuning, but also on the particular perceptual model. AAC has
no means to exploit knowledge about a signal model other than through the trained
Huffman tables again (or to some extend the window-switching process). Such a
highly tuned system is sensitive to changes in each part it consists of and should
be carefully retrained after such changes. Furthermore, despite having proven suc-
cessful, the procedures used in AAC are not known to be optimal in an information
theoretic sense.

In FlexCode we use multidimensional companding [2] to separate perceptual
aspects from quantization and coding. That is, minimizing the squared error on the
compressed signal in quantization will lead to minimal perceptual error (see 2.6.3).
At each stage, components are (ex-)changeable without affecting the other stage.
This allows for tractable equations yielding optimal solutions in each processing
stage in FlexCode.

The current state of the perceptual model needs to be known at the decoder.
A typical approach is to send information about the perceptual model to the de-
coder (i.e., many transform audio coders send a masking curve as side information).
Since the perceptual model is derived from the signal, one can expect redundancy
between the signal model and the perceptual model. In FlexCode we avoid sending
this information twice by deriving the perceptual model from the signal model (see
2.6.2), an approach typically known only from coding schemes with very basic
perceptual models (such as [3] or [4]). For reasons of computational complexity,
we currently only use the spectral perceptual model proposed in [5].

The remainder of this section is organized as follows. We introduce the spectral
perceptual model and explain how it is derived from the signal model in 2.6.2. In
2.6.3 we explain how to obtain the optimal perceptual compander for the spectral
perceptual model based on its Sensitivity Matrix description. Section 2.6.3 intro-
duces the practical implementation of such a compander by means of a perceptual
weighting filter on the time-domain signal.
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2.6.2 The Spectral Perceptual Model Obtained from the Signal Model

A distortion measure based on a perceptual model aims at describing the human
auditory sensation evoked when comparing a corrupted signal to the original. Here
we describe the spectral perceptual model proposed by van de Par et al. in [5]
which was chosen for the FlexCode coder due to its low computational complexity
and demonstrate how it can be obtained from the signal model.

We denote the original signal by x (masker), and the corrupted signal by x̂, that
is

x̂ = x + s, (2.57)

with the distortion signal s (maskee). We denote the Fourier transform of x, x̂ and
s by X, X̂ and S, with entries indexed by frequency f , i.e., Xf , X̂f and Sf .

The van de Par model [5] defines the detectability as

dPar(X,S) = CsL̂
∑
i

1
N

∑
f |hf |2|gif |2|Sf |2

1
N

∑
f |hf |2|gif |2|Xf |2 + Ca

, (2.58)

where hf is the transfer function of the outer-middle ear filter, gif is that of the ith

gamma-tone filter and L̂ is the effective duration. Two constants Ca and Cs are
chosen such that the threshold of detectability corresponds to dPar(X,S) = 1.

The perceptual model can be extracted from the signal at the encoder and trans-
mitted to the decoder. Since there is redundancy between the signal model and
the perceptual model, transmitting both is not efficient. In FlexCode, we calculate
the van de Par model based on the signal model, so that no extra information for
the perceptual model needs to be transmitted. Simply, we use the transfer function
of the AR signal model as an approximation of the Fourier transform of the input
signal, i.e.,

Xf =
σ

A(ejf )
× σp

1− βe−jfd
, (2.59)

where σ/A(z) is the AR model and σp/(1− βz−d) is the pitch model.

2.6.3 The Optimal Perceptual Compander for the Spectral Perceptual
Model

In this section we outline the derivation of the optimal perceptual compander for the
In this section we outline the derivation of the Sensitivity Matrix for the distortion
measure in (2.58). Let x = [x1, . . . , xN ]T be a vector of random source samples
and x̂ = Q(x) a distorted source vector. Let D be the expected value of the
distortion measure of interest d(x, x̂),

D = E[d(x, x̂)]. (2.60)

For small distortions, that is, closely around the unique minimum x̂ = x of d(x, x̂),
a large group of relevant distortion measures can be expressed as

d(x, x̂) ≈ 1
2

(x− x̂)TDx(x)(x− x̂). (2.61)

Dx(x) is a positive semi-definite N by N dimensional matrix, the so-called sen-
sitivity matrix. Equation (2.61) implies a locally quadratic behavior of d(x, x̂). It
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can be shown that a high-rate vector quantizer minimizing the right-hand side of
(2.61) will have the same centroid density, Voronoi region shapes and performance
as the quantizer minimizing the minimizing the original distortion measure [6].

Let us investigate entropy-coded companding vector quantization, i.e.,

x→ F(·)→ Q(·)→ F−1(·)→ x̂

where F(·) is an invertible one-to-one compressor function with inverse F−1(·)
and Q(·) a lattice quantizer. Let F′(·) be the Jacobian for the compressor F(·). It
is shown in [2] that the optimal compressor function minimizing (2.61) satisfies

F′(x)TF′(x) = cDx(x). (2.62)

Furthermore, for the optimal compander and for small distortions, the mean
squared-error on the compressed signal corresponds to the perceptual error on
the output [2]. This is what offers the flexibility desired in FlexCode, that is, the
decoupling of perceptual aspects from the actual quantization, which can then be
done in a mean squared-error optimal sense.

We propose using a linear compressor function

F(x) = F′(x) x, (2.63)

which fulfills (2.62) if we regard F′(x) constant once x is known. That is, from
(2.62) the optimal compressor is obtained as the root of the Sensitivity Matrix.

It remains to derive the optimal compander for the distortion measure defined
in (2.58). With

|S| = |X− X̂| (2.64)

the perceptual distortion (2.58) becomes

dPar(X, X̂) = CsL̂
∑
i

1
N

∑
f |hf |

2
∣∣∣gif ∣∣∣2 ∣∣∣Xf − X̂f

∣∣∣2
1
N

∑
f |hf |

2
∣∣∣gif ∣∣∣2 |Xf |2 + Ca

. (2.65)

Deriving the Sensitivity Matrix for the distortion measure in (2.65) based on
the guidelines in ([7]) is unnecessarily complicated. Since the distortion measure
is already in a quadratic form, an expression for the Sensitivity Matrix can easily be
obtained just by rewriting (2.65) in matrix-vector notation (as outlined in [8]). Let
H be a diagonal N-dimensional matrix whose diagonal is formed by the frequency
response of the OM filter, i.e. h. In the same fashion Gi is defined, so that the
frequency response gi of the channel-i auditory filter forms the diagonal of Gi.
We then have

dPar(X, X̂) =
CsL̂

N

∑
i

(
GiH

∣∣X− X̂
∣∣)T(GiH

∣∣X− X̂
∣∣)

1
N (GiHX)T (GiHX) + Ca

. (2.66)

Since |X − X̂| is independent of the channel number i it is possible to transform
the expression to

dPar(X, X̂) = |X− X̂|T
[
CsL̂

N

∑
i

(GiH)T (GiH)
1
N (GiHX)T (GiHX) + Ca

]
|X− X̂|.

(2.67)
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Comparing (2.67) with (2.61) one can see that DX(X) is given by

DX(X) = 2
CsL̂

N

∑
i

(GiH)T (GiH)
1
N (GiHX)T (GiHX) + Ca

(2.68)

and also that the Sensitivity Matrix-based representation of the distortion measure
(2.61) and the original distortion measure (2.58) are equivalent in this case.

It is easy to see that the matrix defined in (2.68) is diagonal. That is, the optimal
perceptual compressor for the spectral perceptual model consists of multiplying the
spectral magnitude X with a diagonal weighting matrix W(X) before quantization

Y = W(X) X, (2.69)

or element-wise

Yf = wf Xf , f = {1, . . . , N}, (2.70)

where Y = [Y1, Y2, . . . , YN ]T is the compressed signal and

wf = [W(X)]f,f = [DX(X)]
1
2
f,f . (2.71)

The quantized and coded signal is then expanded accordingly

X̂ = W−1(X) Q(Y). (2.72)

In section 2.6.4 we explain how (2.69) and (2.72) are currently implemented in
FlexCode, namely by means of filters operating on the time signals.

2.6.4 The Perceptual Weighting Filter

To implement the optimal perceptual compander derived in section 2.6.3 we chose
to use pre- and post-filters as originally proposed in [9]. A typical quantizer min-
imizes the squared error. So does the main structure of FlexCode. If we apply a
pre-filter such that the squared error in the filtered signal is equivalent to (2.58), we
can keep the main structure. We notice that with (2.71) and (2.68)

dPar(X,S) =
∑
f

|Sfwf |2 =
∑
f

|Xfwf − X̂fwf |2. (2.73)

If the original spectrum is weighted by wf and the coded one by w−1
f , we change

from perceptual distortion into squared error. Moreover, the weighting over spec-
trum can be done by linear filtering in time domain, as illustrated in Figure 2.11.

Given an amplitude response, there are many ways to obtain a filter that ap-
proximates that amplitude response [10]. An all-pole filter can describe the inverse
filter quite accurately, because the amplitude response of the inverse filter, which
shapes the noise, is similar to the spectrum of the signal, which is described by an
all-pole model in FlexCode. Levinson algorithm can be used to derive the filter.

There are several practical considerations.
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Figure 2.11: Pre- and post-filters.

1. Frequency resolution.
We must decide the frequency grid for |wf |2(2.71). The equivalent rectangu-
lar bandwidth (ERB) of a gamma-tone filter decreases with decreasing center
frequency. The frequency resolution must be chosen such that the filter with
the smallest ERB can have enough accuracy.

2. Zero drift across segments.
The auditory filter attenuates frequency component near 0Hz severely,
which means distortion in that frequency range does never matter. Then
the perceptual weighting may cause a floating DC in the coded waveform,
which is not proper for coding applications. A possible solution is to limit
the attenuation of auditory filter at low frequency.

3. Filter order.
Since the number of peaks shown in the aimed amplitude response is less
than both the number of peaks in the signal spectrum and the number of
gamma-tome filters, a good choice of the filter order is the larger number
between the two.

4. The choice for Ca.
It is tricky to utilize Ca in coding applications, since the loudness at which
the sound is played is not known. However, we do have some clues for
choosing a proper value. One possible assumption is that sound with full
range sinusoid corresponds to the maximum loudness people accept when
they listen to music through regular electrical devices. Another assumption
is that sound with relatively constant power is played at a comforting loud-
ness. According to the first aspect, we can fix this parameter by a constant.
FlexCode applies this idea. According to the second one, we may further
make it adaptive.

5. The choice for Cs.
Only to minimize the detectability in a particular block does not need Cs.
This parameter can help to keep a constant detectability over blocks. A con-
stant detectability can contribute to a small bit stream over the segments that
have little power.
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2.6.5 Conclusions

The above described integration of perceptual modeling in FlexCode has three
main advantages. The sensitivity matrix can be derived for a wide class of dis-
tortion measures, offering a unified approach to integrate advanced perceptual
models and thereby extendability in case better models for human hearing become
available in the future. Multidimensional companding facilitates separability (and
thereby optimality) of FlexCode components. Finally, the redundancy between
the signal model and the perceptual model is exploited by deriving the percep-
tual model from the signal model parameters instead of sending perceptual model
parameters to the decoder.
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Chapter 3

Implementation of the Baseline
Source Coder

3.1 Introduction

This section outlines goals of the implementation by referring to the FlexCode
principles and presents solutions that have been implemented within the baseline
platform. The first goal of the implementation is to facilitate research and de-
sign processes on the proposed coder architecture. The baseline platform should
also provide a flexibility that would allow for incorporating further extensions like
Multiple-Description Coding and new Lattice quantization methods (Sec. 2.5).
Additionally, the baseline coder is required to become a starting point for proceed-
ing towards a real-time demonstration. These goals have been achieved by the
implemented baseline platform.

Section 3.2 describes the proposed architecture and provides the specifications
of the baseline coder. Firstly it contains a high-level overview that explains how
the FlexCode principles are incorporated within the baseline platform. Secondly it
describes in more detail solutions that are used. In section 3.3 the guidelines for the
implementation are presented as well as the motivation for the selected approach
and practical solutions within the source code. Section 3.4 contains comments on
complexity of the coder and on the possibilities of reducing it. Section 3.5 presents
preliminary results.

3.2 Architecture and Specifications

The architecture of the baseline coder has been designed to match the principles of
FlexCode. As a result, a fully scalable coder has been obtained. The coding scheme
can adapt to any particular rate on a frame by frame basis, and computational com-
plexity does not depend on the rate. Such properties can be obtained by exploiting
high-rate theory and probabilistic source modelling that allow to design quantizers
using analytical expressions for given optimality criteria. Independently of the de-
sign requirements the architecture preserves this flexibility for cases of constrained
entropy and constrained resolution.

Another level of flexibility has been achieved by using the same coder archi-
tecture independent of the transform that is used. The architecture can employ
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Figure 3.1: High-level overview of the baseline architecture of FlexCode.

the Karhunen-Loeve transform (KLT) or the modulated-lapped transform (MLT)
in coding. The KLT is intended to be used in a generic configuration of the coder,
while the MLT is its low-complexity equivalent.

The baseline architecture includes generic modelling of the perception with a
perceptual model that is derived from the signal model. This results in low com-
plexity of the perceptual modelling and in addition it is not required to transmit or
store the perceptual model. The current architecture of the baseline source coder
uses the van de Par perceptual model [1].

In the below sub- sections the architecture of the baseline coder is described.
Firstly a high-level overview is presented and later the architecture is explained in
more detail. Finally a detailed specification of the baseline source coder is pro-
vided.

3.2.1 High-level Overview of the Baseline Architecture

A high-level diagram of the baseline architecture is depicted in Fig. 3.1. In the pro-
posed coding scheme an audio signal is segmented into frames of arbitrary length.
Each frame is additionally segmented into an arbitrary number of sub-frames. The
segmentation depends on the configuration of the coder. Frames and sub-frames
can be overlapped if needed. The framing includes signal preprocessing by means
of a high-pass filter.

The signal model is derived of a set of p-order linear prediction coding (LPC)
coefficients and a prediction gain obtained every frame and an open-loop pitch
period estimate obtained every 10 ms. The signal model consisting of the LPC
model and the pitch model based on the open-loop pitch period estimate is used as
basis for the derivation of the van de Par perceptual model.

The next stage of processing is the time domain weighting. A perceptual filter
obtained from the perceptual model is used to render the signal in a domain where
the squared error can be assumed perceptually relevant, i.e., the noise shaping that
occurs by the perceptual post-filter gives the quantization noise a perceptually op-
timal shape.

The time domain weighting is followed by an adaptive decomposition. This in-
cludes ringing subtraction that removes intra-block dependencies. Since the ring-
ing subtraction operates in a closed-loop configuration, this stage introduces a de-
lay in the coding. In case when MLT is used, a windowing is applied, which also
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includes a window-switching mechanism. Currently the ringing subtraction only
works for non-overlapping windows. The implementation of ringing subtraction
for overlapping windows is yet unsolved.

The adaptive decomposition is finalized by applying a transform to the signal
to be encoded. In this step the inner-block dependencies are removed from the
encoded signal. This part of architecture is generic in terms of transform that is
used. Changing the transform affects the data-flow within the coder, but it does
not affect the architecture as the components of the architecture are designed to be
generic. This stage of processing includes transform computation, which in case of
KLT uses the composite signal model that consists of the AR signal model derived
from the LPC model and the pitch model. In case of MLT transform the composite
model is not used in transform derivation, instead the transform is fixed for a given
sub-frame size.

In the next stage the transform is applied directly to the signal on sub-frame
basis. This can be followed by normalization if such is required by the channel
coder. Finally the transform coefficients are quantized.

The system contains a local decoder to allow some blocks of the coder to run
in a closed-loop fashion. The local decoder generates the decoded signal from the
signal model and the quantized transform coefficients. The signal is run through
the inverse perceptual filter to arrive in the original signal domain. Optionally a
post-filter can be applied to the decoded signal.

3.2.2 Detailed Description of the Baseline Architecture

A detailed block diagram of the baseline architecture of FlexCode source coder is
shown in Fig. 3.2.

The baseline source coder can operate on frames and sub-frames of arbitrary
lengths. There are however constraints that a multiple of sub-frames results in
a frame. The architecture is fully scalable in terms of the rate. Moreover the
components of the architecture are generic in terms of the transform that is used.
Selection of the transform affects the data-flow between the functional blocks of
the coder, therefore for clarity it is convenient to consider KLT coder and MLT
coder separately. The architecture is discussed here by describing the functional
blocks that can be distinguished within the platform in the sub-sequent paragraphs.

The coding is performed on frames of segmented signal. The segmentation
is preceded by setting up the framing algorithm. The length determination block
makes the decisions about the length of the frames and sub-frames. This function-
ality is used in particular when the window switching mechanism is enabled and
the decisions are based on the feedback from the transient detection block. Ad-
ditionally the lengths of frames are constrained by a maximum acceptable delay.
In the simplest setup the coder operates with a fixed frame length and with a fixed
number of sub-frames within the frame. Usage of MLT introduces overlap between
the sub-frames, while in case of KLT coder such overlap is not necessary.

The framing block performs the actual segmentation of the signal to be encoded.
The framing block is designed in a way that supports variable frame and sub-frame
lengths and overlapping as defined in the length determination block. Additionally,
a pre-processing is introduced within the framing block by means of a high-pass
filter with a cut-off frequency of 67 Hz. The preprocessing aims at removing DC
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Figure 3.2: Detailed block diagram of the FlexCode baseline platform.

component of the signal to be encoded.
The signal modelling is an important functionality of the flexible baseline plat-

form as usage of the statistical signal models is crucial to obtain scalability of the
quantizers within the coder. In case of the KLT coder the signal model is also used
to derive the transform. In addition, the signal model composed of AR-model and
pitch model is used to derive the perceptual model. A set of LPC coefficients is
obtained every frame and interpolated for the sub-frames. The LPC coefficients
are quantized in the LSF domain using a GMM. The LPC coefficients and predic-
tion variance σ are obtained by using Levinson-Durbin algorithm. Let {ai}pi=1 be
the interpolated LPC coefficients for a current sub-frame. The corresponding LP
synthesis filter is of form

σ

A(z)
=

σ

1 + a1z−1 + a2z−2 + ...+ apz−p
. (3.1)

The signal modeling block performs also an open-loop pitch prediction. The cor-
responding LTP synthesis filter is of form

σp
1− βz−d

, (3.2)

where β is a pitch model gain, σp is a variance of the pitch and d is the pitch period.
The pitch model is incorporated together with the AR-model creating a complete
signal model that is accurate enough to be used to derive a corresponding percep-
tual model. The parameters of the pitch model are quantized. The quantization can
be performed with constrained entropy or resolution. The statistical properties of
the open-loop pitch period are modelled by a Gaussian mixture model. In the cur-
rent version of the baseline platform the open-loop pitch estimator is implemented
according to the G.729.1 standard [2].
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The signal model is used in a perceptual modelling block to derive the van de
Par perceptual model according to the method presented in Sec. 2.6. The percep-
tual weighting is performed on sub-frame basis.

The pitch refinement block performs closed-loop pitch estimation. The closed-
loop pitch analysis includes finding a closed-loop pitch period and the correspond-
ing gain. The refined pitch model parameters are quantized and the quantization
can be performed in constrained entropy or constrained resolution. The analysis is
performed on a signal that is deemphasized by means of perceptual weighting. The
closed-loop pitch analysis requires fine time-resolution, as even small deviations of
the pitch delay seriously affect the performance of model. The closed-loop pitch
estimation takes into account two possible situations. One where the pitch period
is larger than the length of a sub-frame, the other where the pitch period is smaller
than the sub-frame length. In both cases a maximum likelihood estimator is used
to get the estimates for refined pitch period and the gain of the adaptive codebook.

The composite model is a refined signal model that is necessary to derive the
KLT. It consists of the signal model that is interpolated on sub-frame basis and the
refined-pitch model obtained during closed-loop pitch analysis. Additionally, the
composite model includes the perceptual model necessary for computation of the
KLT. A detailed block diagram describing the relations between the blocks required
for the composite model computation is shown in Fig. 3.3.

The baseline coder removes redundancy in two steps. The first one deals with
an intra-block redundancy, which is removed by means of ringing subtraction. This
aims at removing the zero-input model response from the sub-frame that is going to
be encoded. An inner-block redundancy is removed later by means of a transform.

In the KLT case the transform computation requires usage of the composite
model. First an impulse response h of the composite model is computed, taking
into account the perceptual filter that is used. The impulse response is truncated to
a size of a sub-frame. Let h0, h1, ...hK−1 denote the truncated impulse response
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for a sub-frame containing K samples. Let

H =


h0 0 . . . 0
h1 h0 . . . 0
...

...
. . .

...
hK−1 hK−2 . . . h0

 , (3.3)

then the estimate of the covariance matrix Σ of the sub-frame can be found as

Σ = HHt. (3.4)

Finally, an Eigenvalue decomposition Σ = UΛU t is performed. U is an orthogonal
matrix for which U tU = I and Λ = diag{λ0, ..., λK−1} is a diagonal matrix of
Eigenvalues.
In case of the MLT the computation of the transform is reduced to finding a set of
sinusoidal basis functions including appropriate windowing. For a given sub-frame
size these basis functions are fixed.

The transform is applied directly to the perceptually weighted signal segmented
into sub-frames. In case of KLT a K-dimensional sub-frame is transformed into
K-dimensional vector of coefficients. In case of MLT a 2K-dimensional sub-frame
is transformed into a K-dimensional vector of coefficients.

The quantization of transform coefficients looks different in cases of con-
strained entropy and constrained resolution. In the case of constrained entropy
a uniform quantization is optimal (as long as the MSE error criterion can be
assumed) with a fixed quantization step ∆. Let y be a K-dimensional vector of
transform coefficients, which may be written as [y0, ..., yk, ..., yK−1]t. A scalar
quantizer is applied independently to each dimension. The quantization index can
by obtained by d̂k = [yk/∆], where [·] denotes rounding. The quantization indices
are available for the channel coder.

In case of constrained resolution a normalization using the standard deviation√
λk of the transform coefficients in vector y is applied first. Next a scalar compres-

sor (optimal for a Gaussian random variable with variance 1) is used independently
for each dimension. Later a uniform scalar quantizer is applied. The Fox algorithm
is used to allocate the bits for the scaled and compressed transform coefficients that
are going to be encoded and transmitted. [3]

The quantization of the transform coefficients can be extended to incorporate an
adaptive MDC quantization whenever a robustness against packet losses is needed.
This is not included in the present baseline system. The rate spent on transmitting
the quantized coefficients is the largest contribution to the total rate. Using MDC
technique to protect this part of the bitstream against packet losses appears natural
and consistent with the notion of MDC that it is applicable whenever a degraded
quality is acceptable. In a system designed to combat packet losses there is also
a need to protect the signal model. As the average rate that is spent on the model
is constant and also significantly smaller than the rate used to transmit the trans-
form coefficients, the model can be protected by means of forward error correction
(FEC).

The existence of a closed-loop is required for performing ringing subtraction
and the refined pitch estimation. This motivates implementing a local reconstruc-
tion block. The block reconstructs the signal using the quantized transform coeffi-
cients and the quantized model parameters.
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3.2.3 Specifications of the Baseline Coder

The baseline architecture has an algorithmic delay that depends on its configura-
tion. The lowest algorithmic delay is obtained in a configuration when only the
computation of the signal model and the ringing subtraction contribute to it. The
baseline platform is fully flexible in terms of its configuration, therefore a detailed
specification can be given for a particular setup of the coder. As an example we
give a specification of a coder that is set up to work with audio signals with a
sampling frequency of 16 kHz using the KLT. A reasonable setup of the coder for
such a sampling frequency assumes frames of 20 ms length and usage of 4 sub-
frames, 5 ms each without overlapping. The delay introduced by LPC analysis is
then 25 ms as 5 ms look-ahead is taken into account while deriving the model pa-
rameters. The current setup includes open-loop pitch estimation that is performed
according to the G.729.1 standard. Thus, the pitch period is predicted every 10 ms.
The open-loop pitch estimation does not contribute to the algorithmic delay as it
is performed in parallel fashion to the signal model estimation. Closed-loop pitch
estimation and ringing subtraction require algorithmic delay of one sub-frame. In
the current setup it is 10 ms. The algorithmic delay increases as window switching
feature of the coder is enabled, depending on the length of the longest window that
is used.

The baseline platform for the FlexCode source coder is fully flexible with re-
spect to the sampling frequency, target bitrate, and optimality conditions for the
quantizers that are used.

3.3 Implementation of the Baseline Coder

3.3.1 Guidelines for Implementation

There is a number of reasons to select MATLAB as a suitable environment for con-
structing the baseline platform. The most important reason is a requirement to have
a possibility for fast implementation of the solutions provided by all the partners.
The implementation in MATLAB provides a good insight into the coder at algorith-
mic level, therefore it stimulates collaboration between the partners. Additionally,
it is required to have a good transparency in terms of progress, which is easily
obtained using the high-level programming language of MATLAB.

The baseline platform implemented in MATLAB is a starting point for a real
time implementation that will be created using C/C++. This is part of work falling
under WP.4, which aims at integrating the programs delivered by WP.1 and WP.2
into a single system. The computational efficiency of all the routines will be inves-
tigated. Based on this analysis the computational complexity will be decreased if
needed.

3.3.2 Flexible Baseline Platform

The main routine of FlexCode implements the algorithm that is segmented in hi-
erarchies of design blocks as shown in Figures 3.2 and 3.3. Such an approach
simplifies the management of the platform and improves the transparency of the
coding algorithm.
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The blocks correspond to the functionalities of the coder that can be considered
as interacting entities. The interface of the blocks is generic. An example of the
interface is shown below.

[output, state] = functional_block(input, setup, state)

Each block is implemented as a separate function and has a standard interface to
communicate with other blocks. Each block has a separate memory (state) and a
separate setup. The outputs of the blocks are organized within structures that are
accessible by other blocks depending on the necessity. This allows to achieve a
clear data flow between the blocks. Another advantage of this approach is that it
results in a flexible configuration of a whole coder as it can be easily changed by
rearranging the data flow between the blocks or introducing new blocks.

The main routine of the baseline platform consists of two parts. The first one
is an initialization, during which all the blocks are configured depending on the
design constrains. The second part includes a loop containing the blocks that are
used during data flow.

3.3.3 Routines

The routines of the main function are explained below in the order they are called
in the main loop of the encoder. The first few routines are the initialization rou-
tines. Their task is to define the setup of the different functional blocks and to
initialize their memory (state). To ensure that the different blocks are setup consis-
tently some of the initialization routines use the output of preceding initialization
routines.

general_setup = init_main(rate, constraints)

The routine prepares a setup structure for the main function. It requires an input
with a target total rate (averaged rate in the entropy-constrained case) and addi-
tionally a set of constraints including an optimality criterium for the quantizers
(constrained entropy or resolution), duration of a frame and number of sub-frames
within a frame. Also the transform that is used for coding is specified.

[setup_length_det, state_length_det] =
init_length_determination(general_setup)

The routine prepares a setup structure for the length determination block. This
structure can handle a setup for variable lengths of frames and subframes and ad-
ditionally configure transient detection mechanism that is a part of the window
switching feature of the coder.

[setup_framing, state_framing] = init_framing(general_setup,
setup_length_det)

The routine prepares a setup structure for the framing block. It can handle variable
lengths of a frames and subframes and overlapping of frames and subframes.

[setup_signal_model, state_signal_model] =
init_signal_model(general_setup, setup_length_det)
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The function initializes the signal modeling block including a setup of order of the
prediction, type of performed interpolation of AR-model coefficients, open-loop
pitch estimation, and quantization of model parameters.

[setup_perc_model, state_perc_model] =
init_perc_model(general_setup, setup_length_det)

The function generates a setup structure for the block performing perceptual model
derivation.

[setup_normalize, state_normalize] = init_normalize( ...
general_setup, step_size)

This function creates a setup structure for the normalization block. It includes a
setup for a quantizer of a sub-block gain.

[setup_window_switch, state_window_switch] =
init_window_switch(general_setup)

This function creates a setup structure for the block performing window switching.

[setup_pitch_refine, state_pitch_refine] =
init_pitch_refine(general_setup, setup_length_det,
setup_signal_model)

This function prepares a setup structure for the pitch refinement block. This setup
includes initialization of the filters used in the closed-loop pitch estimation and
settings for the interpolation.

[setup_pitch_ref_quant, state_pitch_ref_quant] =
init_pitch_ref_quant(general_setup,setup_pitch_refine)

This function generates a setup structure for quantization of the parameters of the
refined pitch model.

[setup_comp_model, state_comp_model] =
init_comp_model(general_setup, setup_length_det,
setup_signal_model, setup_perc_model, setup_pitch_refine)

This function generates a setup structure for the block performing computation of
the composite model.

[setup_ring_sub, state_ring_sub] = init_ring_sub(general_setup,
setup_comp_model)

This function generates a setup structure for a ringing subtraction block. It also
initializes the filters used in the ringing subtraction block.

[setup_transf_comp, state_transf_comp] =
init_transf_comp(general_setup, setup_comp_model)
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This function generates a setup structure for the block computing the transform.

setup_transform = init_transform(general_setup, ...
setup_length_det)

This function generates a setup structure for the block applying the transform to
the perceptually weighted subframe.

[setup_coeff_quant, state_coeff_quant] =
init_coeff_quant(general_setup, setup_length_det, step_size)

This function generates a setup structure for the block performing quantization of
the transform coefficients.

[output_local_reco, setup_local_reco, state_local_reco] =
init_local_reco(general_setup, setup_comp_model, ...
setup_transform)

This function generates a setup structure for the block performing local reconstruc-
tion.

Functions described below are executed within main loop of the encoder func-
tion. They process the signal either on a frame basis or a subframe basis.

[output_length_det,stream_length_det, state_length_det] = ...
length_determination(signal, setup_length_det, ...
state_length_det)

This function computes the lengths of frames and subframes. It operates on the sig-
nal to be encoded performing segmentation. Additionally, this block incorporates
the transient detection module that is a part of the window switching functionality
of the coder.

[output_framing, state_framing] = framing(signal,
output_length_det, setup_framing, state_framing)

This function performs signal segmentation according to the decisions made in the
length determination block. Additionally, pre-processing (high-pass filtering) is
applied here.

[output_signal_model, stream_signal_model, state_signal_model] =
signal_model(output_framing, ...
setup_signal_model, state_signal_model)

This function performs signal model extraction. The signal model is obtained every
frame. The model parameters include LP coefficients and signal variance. The
model can be extended to include LTP pitch modelling. In such case an open-
loop estimate of the pitch period is found for 10 ms blocks. This functional block
includes quantization of the model parameters with support of constrained entropy
and constrained resolution cases. The model parameters are interpolated for the
subframes. Interpolation is performed on the quantized parameters.
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[output_perc_model, state_perc_model] =
perc_model(output_signal_model, output_framing, setup_perc_model,
state_perc_model)

This function computes the perceptual model based on the signal model. A filter
for perceptual weighting is computed within this routine. The filtering is applied
to the signal delivered from the framing block. It is possible to access the filtered
signal organized in frames and subframes depending on coder configuration.

[output_window_switch, state_window_switch] = ...
window_switch(output_perc_weight, output_length_det, ...
setup_window_switch, state_window_switch)

This function applies the different windows necessary to obtain the switching
mechanism in conjunction with the length determination and framing blocks. It
generates and applies proper windows.

[output_pitch_refine, state_pitch_refine] = ...
pitch_refine(output_perc_model, output_signal_model,
output_local_reco, setup_pitch_refine, ...
state_pitch_refine, n_subframe)

This function performs closed-loop pitch refinement. The function operates on the
subframe basis. The closed-loop parameters of the pitch model include refined
pitch period (supporting fractional delay) and adaptive-codebook gain. Since the
estimation runs in closed loop this routine requires an input from the local recon-
struction block.

[output_pitch_ref_quant, stream_pitch_ref, state_pitch_ref_quant]
= pitch_ref_quant(output_pitch_refine, ...
setup_pitch_ref_quant, state_pitch_ref_quant)

This function performs quantization of the refined pitch parameters. The refined
pitch parameters are quantized on subframe basis. The output structure is the same
as the output of the pitch refinement block, so the quantization of pitch parameters
can be easily bypassed for debugging purposes.

[output_comp_model, state_comp_model] = ...
comp_model(output_pitch_ref_quant, output_signal_model,...
output_perc_model, setup_comp_model, state_comp_model)

This function performs calculation of the composite model. The composite model
is computed on subframe basis. The model is used in derivation of the KLT. The
composite model incorporates the LP model that is interpolated for a subframe
basis and the refined LTP model obtained in the pitch refinement block. The com-
posite model exists as a separate block only to make the coding algorithm more
transparent.

[output_ring_sub, state_ring_sub] = ...
ring_sub(coded_signal,output_comp_model, ...
output_perc_model, output_window_switch, ...
setup_ring_sub, state_ring_sub, n_subframe)
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This function performs ringing subtraction. The ringing is subtracted on the sub-
frame basis and the procedure runs in a closed-loop fashion. Therefore this block
requires an access to the coded signal, which is available at the local decoder and
the composite model. The ringing subtraction block computes and subtracts the
zero-input model response.

[output_transf_comp, state_transf_comp] = ...
transf_comp(output_comp_model, setup_transf_comp, ...
state_transf_comp, n_subframe)

This function performs computation of the transform. In case of KLT a composite
model must be accessible by this block. The output structure contains the transform
itself and variances of the components obtained during Eigenvalue decomposition.
If the MLT is used instead, the computation of the transform is reduced to finding a
proper set of sinusoidal basis functions and the composite model is not used within
this block. As noted earlier, the transform is fixed for a given sub-frame size in
case of the MLT.

[output_transform] = ...
transform(output_ring_sub, output_transf_comp, setup_transform)

This function applies the transform to the signal. It returns a structure containing a
vector of transform coefficients.

[output_normalize,state_normalize] = ...
normalize(output_transform, output_comp_model, ...
output_ring_sub, n_subframe, setup_normalize, ...
state_normalize)

An estimate of a gain for each subframe is found and quantized within this block.
In addition, the function applies normalization of the transform coefficients vector.

output_coeff_quant, stream_coeff] = coeff_quant(output_normalize,
output_comp_model, output_transf_comp, output_length_det,
output_rate_dist, setup_coeff_quant, n_subframe)

This function performs quantization of the normalized transform coefficients. This
quantization is performed on subframe basis. Both, entropy constrained quantiza-
tion and resolution constrained quantization are available.

[output_local_reco, state_local_reco] = ...
local_reco(output_transf_comp, output_comp_model, ...
output_ring_sub, output_coeff_quant, output_normalize, ...
output_length_det, setup_local_reco, state_local_reco, ...
n_subframe)

This function implements a local decoder. The decoder performs signal reconstruc-
tion on subframe basis using the quantized model parameters and the quantized
transform coefficients. The block is necessary to implement closed-loop elements
within the coder architecture.

67



3.4 Comments on the Complexity

At the current stage of development complexity is not our major concern. Still, the
architecture is designed to allow a clear insight into complexity at all the stages of
the coding algorithm. The stages that have the highest complexity are identified
and throughout the next period of the development an effort will be made to reduce
the complexity associated with them. An estimate of the relative complexity asso-
ciated with the different steps is shown in Figure 3.4. The reduction of complexity
is also a natural step towards a real-time demonstration platform. However, the
clear separation of functional entities is likely to cause a number of duplicate com-
putations in the codec. Once the codec has matured, optimization towards avoiding
such duplicate computations has to be made.

The current baseline platform was designed to facilitate solutions provided by
the partners. It is done in a way that assures a full flexibility of coder configuration
and yet transparency in terms of the algorithms that are used. This transparency
led to a certain level of inefficiency. Therefore the complexity can be significantly
decreased at more mature stages of the coder, for instance, by reducing the number
of filtering operations or by taking the advantage of the flexible architecture and
selecting a proper configuration of the coder for a specific application.

The baseline platform is fully flexible in terms of the used transform. The men-
tioned kind of flexibility is also important for reduction of the complexity. The KLT
allows for achieving FlexCode goals regarding the flexibility and scalability, how-
ever computation of the transform requires a relatively high computational effort.
The MLT configuration is intended to be used as an alternative approach whenever
a low complexity is needed. Reduction of complexity in the computation of the
KLT transform is now a research topic at KTH.

In general the philosophy of FlexCode leads towards a low-complexity coder
with low memory requirements.

3.5 Preliminary Results

The progress towards objectives of FlexCode is evaluated by means of subjective
listening tests on a regular basis. This allows to develop the coder and compare
the introduced technologies with respect to the state-of-the-art methods. The de-
velopments of WP.1 are evaluated with comparison to the technologies selected by
WP.5 and the subjective listening test are performed according to the MUSHRA
method [4].

An example of MUSHRA test results is shown in Figure 3.5. The test results
are averaged for 12 listeners. The average scores are also computed for the four
classes of audio clips, which are used during the tests (music, speech + music,
speech, noisy speech). All the coders were configured to operate at 24 kbps and
ITU-T G.729.1 has been selected as representative state-of-the-art coder at that
rate.
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constrained coder.
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Listening test results
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Figure 3.5: Averaged MUSHRA test results (respectively: all clips, 4 music
clips, 2 noisy speech clips, 4 speech clips, 2 speech + music clips).
The coders appear in the following order: FlexCode CR-MLT, ITU-
T G.729.1, Reference, 3.5kHz Anchor, FlexCode CE-KLT, FlexCode
CR-KLT. All the results are averaged for 12 listeners. All the coders
operate at 24 kbps.
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