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Abstract

This report describes the technologies developed under the FlexCode video coding pilot project.
While much of the FlexCode methodology is generic in nature, it was designed in the context of
scenarios that exist in audio coding. In audio coding the number of variables transmitted in an in-
dividual packet is relatively low and a given model family is used to model the signal, whereas in
video coding the number of variables is high and the models are selected from various families.
This limits the direct applicability of some FlexCode source coding techniques to existing video-
coding algorithms. Thus, the emphasis of the work in this pilot project was on the application of the
FlexCode quantization-based multiple-description coding (MDC) methodology to video coding. The
FlexCode MDC technology is attractive as it asymptotically approach the theoretical performance
bounds, contrasting with existing ad-hoc MDC approaches used in video coding. The scalable Flex-
Code quantization-based MDC methods are based on high-rate theory. It was found that this means
that energy concentration is vital for good performance. Thus, we studied the use of FlexCode MDC
in the context of video streaming where a recent spatio-temporal coding architecture that provides a
high level of energy concentration. Our experimental results confirm that the FlexCode MDC per-
forms well in this context. The new architecture can provide the right level of redundancy for the
situation at hand and facilitates bit-plane stripping. The method is particularly useful in the conext of
broadcast and multi-cast where the packet-loss rate cannot be specified.
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Chapter 1

Overview

1.1 Introduction

The main objective of the FlexCode project is to develop generic coding technologies that have as
distinguishing factor their ability to adapt to the situation at hand instantaneously. The methods avoid
application-specific solutions and provide a coding efficiency that is at least similar to current state-
of-the-art algorithms. The objective is aimed at a rapidly increasing diversity of services and an
increasingly heterogeneous telecommunications network.

While the coding technology developed within FlexCode is generic, within the project it is mainly
applied to the coding of speech and audio signals. In contrast, this report describes a pilot project
on the application of FlexCode source-coding technology to video signals. To see which FlexCode
technologies are most suitable for video signals, we first investigated the similarities and differences
between audio and video coding technologies.

We briefly review the organizational structure and technical approach of the FlexCode project to
provide a context for this report. The algorithm development work of FlexCode is separated into
source coding and channel coding. Work package 1 (WP1) deals with source coding and WP2 with
channel coding. The work reported here falls in WP1, which has as objective to develop a source
coding methodology and its implementation.

By using computable quantizers and probabilistic signal models, the FlexCode source-coding
methodology allows for instantaneous adaptation of the coding to satisfy rate, quality, and robust-
ness requirements. The model parameters are estimated first, and the quantizers and coding stages
can be optimized (computed) based on the statistical models.

The real-time scalable FlexCode quantizers are specified by means of equations that are based
on probabilistic signal models and knowledge of the channel statistics. The equations have analytic
solutions that can be adapted to the quality requirements and network conditions at hand. The source
coder can migrate seamlessly from single-description coding to multiple-description coding (MDC)
to handle packet loss and can change instantaneously to the optimal level of robustness to the packet
loss rate. Bit-plane coding techniques can be used to obtain a layered bit stream that facilitates a
reduction in rate after encoding. (In FlexCode , the bit-plane techniques cannot be combined with
MDC.)

The high-rate theory based source coding approach is complemented with the sensitivity ma-
trix approach used for describing sophisticated perceptual models. The sensitivity matrix approach
replaces distortion measures that would make quantization computationally intractable by a local
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quadratic approximation. This allows the introduction of sophisticated distortion perception-based
measures that have hitherto not been used for source coding because of practical problems.

1.2 FlexCode Technologies and Audio vs Video Coding

While the FlexCode source coding technologies are generic, they rely on the existence of statistical
signal models; all coding stages are based on the statistical model. In this section, we discuss whether
and where these technologies, which were developed in an audio signal context, are useful for video
signals. This requires a discussion of the similarities and differences between speech and audio coding
on one side and video coding on the other side. We first discuss the source-coding and then discuss
multiple-description coding.

At a high level, audio and video coding paradigms tend to be similar: a pre-processing stage is
followed by quantization, which is followed by coding of the quantization indices; at the decoder the
matching stages are performed in reverse order. The purpose of the pre-processing is to reduce the
dependencies between the variables to be coded. Independence of the variables means that scalar,
or low-dimensional, quantization results in only a minor increase in rate compared to the theoretical
bounds on coding efficiency. The step of coding the indices can consist of fixed-rate coding (generally
trivial), or variable-rate coding (e.g., Huffman coding, arithmetic coding, range coding).

Before we continue, we should extend the simple outline of coding paradigms to include per-
ception. Both in audio coding (e.g., [1, 2]) and video coding (e.g., [3, 4]), it is common to use
the pre-processing stage to account for the perception of the signal. Mostly for mathematical and
computational convenience, an L2 distortion measure is commonly used for quantization and the
pre-processing can be extended to include a weighting such that the L2 criterion approximates the
perceived distortion. (Under certain conditions it is equivalent to scale the quantizer step sizes.) The
signal is weighted by amplifying signal dimensions that are perceptually important and decreasing
those that are not perceptually important. In many cases a filter is used for this purpose. Care must
be taken that the remaining pre-processing operations do not affect the L2 distortion measure.

The ability to describe the signal by a statistical model forms a vital aspect of the real-time scalable
FlexCode source coding paradigm. The parameters of the statistical model are estimated for a signal
segment. A first innovative aspect of the FlexCode paradigm lies in the fact that the pre-processing,
quantization, and coding steps are all based on the estimated statistical signal model. The FlexCode
paradigm assumes that the propagation of quantization errors is limited so that a mismatch between
encoder and decoder disappears over time if packet loss occurs. A second innovative aspect of the
FlexCode paradigm is the signal-adaptive transform, which reduces the severity of the approximations
made (relative to ideal pre-processing) in the process of creating a practical coder. As FlexCode
strongly relies on the existence of a statistical model, it is useful to study the notion of modeling in
the context of speech/audio coding and video coding.

The standard pre-processing methods aim to reduce dependencies by decorrelating the signal sam-
ples either by means of prediction and/or by means of transforms. The prediction operation is gener-
ally adaptive, and the predictor corresponds to a signal model that needs to be known to both encoder
and decoder. In speech coding adaptive linear prediction is nearly universal, but it is not so common
in audio coding. In video coding the adaptive prediction involves motion compensation. The trans-
form operation of transform coding is generally not adaptive, but relies on the fact the Fourier and
related transforms decorrelate stationary signals. This is an approximation. The transform results in
a set of variables with nonuniform variance, with the set of variances changing from coding block to
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coding block. For efficient coding, information about these variances must be known to encoder and
decoder. Most common is to simply transmit the maximum value of a set of coefficients; the variance
can also be transmitted. This information about the signal variances can be interpreted as the signal
model in the context of transform coding.

As mentioned, the pre-processing stage of speech coding usually consists of prediction. The in-
verse of the prediction-error filter is the autoregressive model filter. The autoregressive signal model
describes correlations between the signal samples and, equivalently, the power spectral density of the
signal, which is simply the square of the frequency response of the AR model filter. The coefficients
of the model are quantized and encoded and the signal samples are decorrelated based on knowledge
of the signal model and then quantized and coded, again using knowledge of the signal. Speech
coding most commonly uses fixed-rate coding.

Audio coding generally uses the fact that non-adaptive Fourier and cosine transforms can decor-
relate stationary signals, asymptotically with increasing block length. The resulting approximation
of the power spectral density is divided into frequency bands and the gains of these bands are quan-
tized and coded. The set of gains can be interpreted as a signal model. The signal coefficients are then
quantized and coded with knowledge of the gains for the bands. The coding is generally variable-rate.

In the coding of video signals, we can distinguish spatial and temporal pre-processing. Commonly
used video-coding paradigms such as H.264, e.g., [5], perform temporal decorrelation with predic-
tion, which is based on determining motion between frames (which location in the previous frame
did a pixel come from). The gain of the predictor is generally taken to be one, which means that any
mismatch between encoder and decoder does not decay. The motion vectors and the prediction gain
can be seen as a signal model. The form of these models varies and this means that we cannot speak
of a single model family. This is usually combined with spatial decorrelation based on prediction and
fixed transforms on small blocks (8× 8 pixels, for example) for each frame, generally in the form of
discrete cosine transforms. The transform coefficients are then quantized and the resulting quantiza-
tion indices are coded. Variable-rate coding is used to encode the coefficients. Note that variable-rate
coding is natural when many variables are transmitted simultaneously as the rate averages out. The
coding is generally performed simultaneously for all quantization indices of a coding block. Efficient
scan patterns for the quantized coefficients are used, followed by context-adaptive binary arithmetic
coding. This coding is scalable and effective even when many of the coefficients are quantized to
zero. The benefit of context-adaptative coding indicates that dependencies remain after coding. In
general these are dependencies that are not removed by a linear operation. No parametric model for
these dependencies is provided. In addition, other dependencies are removed with models that are
selected from different families in an opportunistic manner. However, the FlexCode source coding
technology assumes the existence of a fixed model family to remove the dependencies and its scalable
quantizers require a rate significantly higher than 1 bit per sample.

A less common class of video coders uses transforms also for the removal of temporal correla-
tions, e.g., [6, 7, 8]. In this case the video frames are represented by a sequence of largely indepen-
dent images that can be coded with regular image coders. In image coding the wavelet transform is
commonly used. The signal is divided into different scales and it is possible to identify pixels that
describe a particular spatial region at these different scales. It has been found that, for a particular
region, the magnitude of the fine-scale coefficient is generally smaller than that of the large-scale
coefficients. This suggest the usage of a tree structures (first used by Shapiro [9]) in coding and such
trees are indeed commonly used in image coding. The tree structure and the notion of decreasing
signal amplitude can be again be interpreted as a signal model.

It is natural to interpret speech and audio coding as the specification of the signal in terms of a
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model and a description of the signal given the model. Let us look at this in some more detail before
we return to video coding. If we make the additional assumption that the signal can be described by a
particular family of signal densities (typically Gaussian), then the signal model becomes a statistical
model. For the autoregressive model, the signal is interpreted as the result of a convolution of a
white Gaussian signal with the autoregressive model filter. For the transform case, depending on the
transforms used, the gains correspond to a particular type of convolution in the time domain [10].
Thus, the signal can be seen as the result of this particular type of convolution of the transform of the
envelope with a white Gaussian signal. For the autoregressive model, the time samples are distributed
according to a multi-variate Gaussian distribution. Since the signal is modeled as stationary, the
covariance matrix of the signal is Toeplitz. As the sum of Gaussians is a Gaussian this is also the case
for the transform case, but the signal model is cyclo-stationary rather than stationary. For the model
description to be meaningful, the convolutions must result in an output that is finite. For the case of
the autoregressive model this means that the autoregressive filter must be stable. The transform case
provides a finite output for any finite input.

In the video coding case, the interpretation of a description in terms of signal model and coding
given the signal model is possible but perhaps not as natural as for speech and audio coding. While
temporal prediction, including motion compensation, can be seen as a signal model, the unity gain
of the filter means that a FlexCode approach can not be used as a mismatch between encoder and
decoder does not decay. (Naturally error propagation stops whenever an intra frame is transmitted;
intra-frames were created for this purpose.) While error propagation exists in prediction based video
coding, it does not in video coders that use a temporal transform. Although this architecture is not
common, it is attractive for broadcast and multicast scenarios.

We can conclude that the generic FlexCode technology is not naturally facilitated by the most
common video coding architectures. Fine-grained scalability of the encoding accuracy is not a sig-
nificant advantage. However, the advantages of FlexCode MDC may carry over to video coding if
its architecture is suitably adapted. In the next section, we discuss how FlexCode technology can be
used to improve video coding.

1.3 FlexCode Multiple-Description Coding for Audio and Video

As the fine-grained scalability of FlexCode does not provide a large advantage, we decided to focus on
the introduction of the scalable FlexCode MDC technology into video coding. MDC fails graciously
when the channel capacity is exceeded, whereas the more commonly used error-correcting code based
techniques have an all-or-nothing behavior. Thus, MDC has a significant advantage when the exact
channel statistics are not known. This is the case if the channel varies or if a range of channels is
addressed simultaneously, as is the case in multicast and broadcast scenarios. Note that the fact that
averaging is more accurate for the large data quantities of video coding as it is for the smaller data
quantities of speech and audio coding does not affect this analysis. In addition, MDC is a form of
joint source-channel coding, which means that it generally performs better for shorter coding delays;
the separation of source and channel coders is guaranteed to facilitate optimality only for the case of
infinite delay.

Effective MDC designs are sensitive to error propagation, and the FlexCode system is no exception
in this respect. As we discussed in section 1.4, conventional video coding architectures suffer from
error propagation. Thus, we studied a number of video architectures on their suitability for MDC
before we settled on two specific architectures for more detailed pilot studies.
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The first architecture was based on the approach promoted by Jagmohan et al., [11, 12, 13], which
uses a distributed source coding [14, 15] to remove the error propagation (encoder-decoder mismatch)
problem. For this work, we used the standardized H.264 coder (e.g., [5]) as a video coding platform.
The main difference and advantage of our FlexCode based approach compared to that of Jagmohan is
that we used the scalable FlexCode MDC rather than an established MDC (for an overview, see [16])
based on the pioneering techniques of Vaishampayan [17, 18], which are not scalable.

Our distributed-source-coding based MDC (DSC-MDC) work resulted in an M.S. thesis [19] that
is available on the FlexCode web site. As the coding system is algorithmically complex, the emphasis
of the thesis work was to check if the envisioned principles lead to a video coding system that is
practically useful. We encountered two issues that limit the practical use of the approach of Jagmohan.

The first problem with DSC-MDC is associated with the high-rate basis for the theory. The imple-
mented system performed as expected for ranges of the rate that are higher than is practically useful
in the context of video coding. At lower rates it is difficult to satisfy the high-rate assumptions made
in the MDC. In MDC, quantization cells of the so-called side-quantizers each consist of a set of gen-
erally disconnected cells of a higher-rate quantizer (the latter is referred to as the central quantizer).
The large range of values within a single side-quantizer cell means that the distribution of the side-
quantizer indices is broader (regions of high probability are now included in more side cells) and,
as a result the codewords are longer and the rate is higher. In other words, the signal distribution is
relatively narrow compared to the range of the side-quantizer cells and this contradicts the high-rate
assumption, leading to inefficient coding.

The sensitivity of DSC-MDC to low-rate effects is inherent to its architecture. In DSC, the distri-
bution of the decoded variables is determined based on side information (consisting of the previous
decoded information), thus facilitating a low transmission rate. This operation takes the place of the
closed-loop prediction structure in conventional coder architecture. In prediction, the variance of the
residual does not vary over time; no explicity energy concentration in time occurs. Similarly, the
distribution of the variables in DSC is not time dependent. This lack of energy concentration in time
means that at low average rates the above-described low-rate problem extends to many coefficients.
While the problem is ameliorated by the spatial energy concentration performed by the discrete cosine
transform, a system that concentrates energy in time as well as in space would significantly reduce
the low-rate problem. For such a system most coefficients are either high rate, or zero rate.

The second major problem with DSC-MDC is that of rate-control. In distributed source coding the
encoder must provide the decoder with sufficient bits to enable decoding. The rate must be sufficient
for decoding, but it must also not be too high as we then obtain an inferior rate-distortion performance.
In practice, this is often done with “decode-and-request” strategy. However, this approach incurs a
long delay.

For more details of our study of the DSC-MDC based we refer to the thesis of Zhe [19], which is
available from the FlexCode website (www.flexcode.eu).

The second methodology for using FlexCode MDC in video coding avoids the problems of the
DSC-MDC approach. It is described in more detail in chapter 2. The method concentrates energy both
in time and in space. To this purpose the energy-concentrating temporal transform of Flierl [8] is used.
The resulting sequence of essentially-independent images is transformed with a wavelet transform to
perform spatial energy concentration. The coefficients that form the output of the wavelet transform
are quantized with a FlexCode MDC quantizer (which is asymptotically optimal). The output of the
MDC forms two streams of indices (which correspond to the two descriptions), each of which are
losslessly encoded with a conventional image coding algorithm to remove the remaining redundancy.
In the particular application we use the SPIHT algorithm for this coding stage. The result is a video
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coder that can be adopted instantaneously in rate and packet-loss robustness and that has performance
that is competitive with the state-of-the-art. The method and its performance is described in more
detail in chapter 2

1.4 Report Overview

This report consists of two chapters: this overview chapter, and a chapter describing the practical
implementation of FlexCode MDC in a video-coding architecture.
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Chapter 2

FlexCode Temporal Transform Based
Video Coder

G. Zhang, M. Flierl, W.B. Kleijn (KTH)

2.1 Introduction

This chapter describes the FlexCode video coding technology that is robust to packet-loss. In con-
trast to many ad-hoc multiple-description coding (MDC) systems used in video coding, the proposed
paradigm can be argued to be near-optimal from a rate-distortion viewpoint. As the proposed coding
system is based on high-rate theory, new coder configurations can be created in real-time when the
coding environment changes.

Packet loss commonly occurs in packet networks. These losses can be considered as erasures in
channel transmission. Error-correcting codes and MDC can be used to mitigate the effect of erasures.
The usage of MDC can be motivated because it has certain advantages.

Error correcting codes add redundancy to the bit streams. They imply a separation of source and
channel coding. Only for long delays is it known that such a separation does not prevent optimal
performance. It should be noted that “delay” in this context refers to the number of data transmitted
as a block. We can illustrate the “long-delay” result for the case of block codes. A block code is able
to correct a certain number of erasures in the block. The redundancy rate associated with the error
correcting code corresponds to the theoretical bound (no delay constraint) if it can correct all erasures
up to the mean number of erasures in the block. For a probabilistic channel and a finite block size,
the number of erasures in a block can exceed the mean number of erasures per block. The law of the
large numbers shows that the time-normalized probability of this happening can be made arbitrarily
small by increasing the block size.

A problem with the error-correcting code approach is that when it fails, it fails in a catastrophic
manner: in this case no information about the transmitted sequence can be retrieved. The impact
on distortion of such failures is not considered in the design of error-correcting codes. Thus, it is
important to know when the code is likely to fail. Good performance of error correcting codes requires
long delay (many data) and it requires precise knowledge of the channel. In video coding, where the
rate is very high and averaging over many data is possible, the approximation to “long delay” is
relatively good. However, precise knowledge of the channel is often not available. An example where
this is the case in broadcast and multicast scenarios, where the coded bit-stream is transmitted over a
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set of channels with varying properties. To avoid catastrophic failure, the rate of the error-correcting
code must be set relatively high.

In contrast to error-correcting codes, MDC fails in a soft manner. MDC is a form of combined
source-channel coding and good implementations generally perform better at low delays than error-
correcting codes. Whereas MDC is optimized using a distortion measure, error-correcting codes are
designed without knowledge of the impact of failure to correct the errors. Depending on the number
of descriptions of MDC, its quality degrades in a stepwise manner with the number of erasures. The
resulting safety margin means that the rate of a good MDC can, at least in principle, be set closer to
the theoretical performance bound. Underestimation of the erasure probability may result in a quality
that is still acceptable to the user.

In this chapter, we describe an MDC-based video coder that is based on sound theoretical princi-
ples and facilitates real-time reconfiguration based on the channel scenario at hand. The architecture
facilitates a performance that can approach the theoretical performance bounds for the scalar quanti-
zation case. This gives it an advantage over other methods, for which no theoretical analysis exists,
e.g., [1, 2].

Temporal transforms are attractive for broadcast and multicast applications because error propaga-
tion is not present and because they facilitate the use of quantizer-based MDC. The usage of temporal
transforms leads to the subsequent transmission of images that are statistically nearly independent.
This means that MDC methods that have been applied to image processing are also relevant to our
work. Perhaps the most commonly cited image processing MDC system is that of [3]. It uses a decor-
relating transform, but is less effective than our system, which is equipped with additional procedures
to remove dependencies.

The remainder of this chapter is organized as follows: section 2.2 describes the principles of the
approach. Section 2.3 describes the implementation and 2.5 describes the conclusions.

2.2 Coding Principles

To make scalar quantization of signals effective, predictive coding and transform coding are com-
monly used. The methods remove redundancy by decorrelating the signal samples. In this section,
we discuss the choices that led to our video coding architecture.

Transforms, as introduced for the purpose of efficient coding by Huang and Schultheiss in 1963
[4], concentrate energy in relatively few dimensions. Transforms are generally selected to approxi-
mate the Karhunen-Loève transform (KLT), which is optimal for certain conditions. While optimality
of the KLT is less general than commonly assumed [5], it is optimal for a large range of conditions
for variable-rate coding and this suggests that it (and its approximations) forms a good choice for
video coding. The KLT diagonalizes the covariance matrix of a signal vector and can be shown to
maximize the ratio of the arithmetic and geometric means of the variances of the vector components,
which corresponds to a measure of energy concentration.

In audio and speech coding the discrete cosine transform (DCT) is commonly used to approximate
the KLT; it can be shown that for stationary signals, the DCT approximates the KLT asymptotically
with increasing block length. The argument has less of a basis for image and video coding, but the
DCT is commonly used. In practice, the wavelet transform often leads to more energy concentration
than the DCT. This is not unnatural as images are commonly dominated by edges, and such localized
events are associated with energy concentration for wavelets.

Energy concentration is important for the FlexCode approach as it facilitates the application of
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high-rate quantization theory. The assumption that the data density can be approximated as constant
within a quantization cell is reasonable for the dimensions that contain most of the concentrated signal
energy and its inaccuracy is inconsequential for dimensions with low energy. As will see below, this
argument is particularly strong for the MDC case.

While video signals are generally not well approximated by Gaussian densities, analyzing the
behavior of transforms and prediction for this density is instructive. The transform coding approach
naturally leads to a good approximation of the effect of reverse waterfilling, which is optimal from
a rate-distortion viewpoint for Gaussian variables. Reverse waterfiling explains why the failing of
high-rate for dimensions with low energy is inconsequential. Reverse waterfilling implies that, at
the levels of fidelity required in video and audio coding, it is optimal that many dimensions receive
zero rate. Relatively few dimensions have a nonzero rate where high-rate theory is inaccurate. The
good behavior of the transform approach contrasts with the predictive coding approach, where the
benefit of reverse waterfilling can be obtained by using heuristically optimized postfilters [6, 7]. The
postfilters are difficult to optimize, particularly when they are used in combination with perceptual
models, preventing adaptation to a new environment or to different requirements.

The case for using transform coding is further strengthed when the usage of quantization-based
MDC is envisaged. Quantization-based MDC is attractive as practical implementations can come
close to the rate-distortion bounds, contrasting with ad-hoc MDC systems. Two reasons make trans-
form coding desirable for quantization-based MDC. The first is that transform coding does not suffer
from the propagation of errors. The propagation of errors in predictive coding means that encoder
and the decoder can be mismatched. Since the prediction gain in video coding is typically set to unity,
the errors accrue and can lead to severe artifacts. The standard usage of I-frames (intra-coded frames)
prevents the long-term accumulation of errors, at the cost of reduced efficiency. The second reason
why transform coding is attractive is related to the design-approximations used. Quantization-based
MDC generally quantizes the signal with a so-called central quantizer and then splits each index in
the sequence, to obtain a number of separate streams (descriptions). Each stream has its own quanti-
zation decoder (a so-called side decoder, associated with a side quantizer). In the FlexCode approach,
each of these side decoders is described with high-rate-theory based approximations. Unfortunately,
each of the quantization cells of the side-quantizers generally consists of a set disconnected quantiza-
tion cells of a so-called central quantizer. This means the side quantizer cells have a large region of
support, and that the assumption that the density is constant within the cell is likely to be inaccurate.
As a result, the scalar FlexCode MDC is not viable if the rate per dimension and per description be-
comes low (typically a description requires two bits to approximate high-rate theory results). Energy
concentration is vital.

As an aside, we note that in video coding so-called dead-zone quantizers, which have an increased
step size near zero, are common. The high performance of such coders is due to low-rate effects.
However, dead-zone quantizers lead to energy concentration (low amplitude signals are quantized to
zero) and, as a result, they aid the performance of quantization-based MDC.

In video coding, concentration of signal energy is generally not considered an objective. For
each video frame, video coders usually first subtract out a prediction from the previous (quantized)
frame, based on motion estimation. (For the H.264 standard this prediction may be replaced by intra-
frame prediction.) Note that prediction does not concentrate the energy. The prediction operation is
followed by a transform operation performed on subblocks (typically anywhere from 4×4 to 16×16
pixels). Thus, the temporal decorrelation is not associated with energy concentration, but the spatial
decorrelation is.

In addition to not providing energy concentration, the prediction operator (which generally has a
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unit gain) also leads to error propagation. Error propagation means MDC is not possible. Jagmohan
et al., [11, 12, 13] showed that a distributed source coding [14, 15] approach can be used to avoid
error propagation. However, the lack of energy concentration is shared with predictive coding. In
addition, distributed source coding suffers from a rate control problem: it is difficult for the encoder
to guess the redundancy level required. Thus, we do not consider these methods further.

If we are to maximize energy concentration, we are led to temporal transforms. The usage of
temporal transforms is not standardized in video coding. Early systems without [8] and with motion
compensation [9] showed the feasibility of the approach but did not lead to broad acceptance. A
major reason is likely the delay penalty resulting from the transform. However, in broadcast and
multicast scenarios, the coding delay is not a significant disadvantage. In principle, since I-frames are
not required, transform coding is more efficient, and it does not suffer from error propagation.

Recently, a new temporal transform approach was introduced that leads to orthogonal transforms
that facilitate motion compensation [10]. Using the motion vectors as input, the orthogonal transforms
are optimized to maximize energy concentration. The orthogonality of the transforms improves per-
formance over earlier temporal subband systems. In a typical configuration, the temporal transform
reorganizes the 16 video-frames into 16 subbands with a low level of redundancy between the bands.
(A low redundancy level is loosely associated with the energy concentration.) Each band corresponds
to an image (with the same number of pixels as the video signal) that must be transmitted separately.
A standard image coder can be used to encode these images. Natural candidates are the wavelet-
based zerotree algorithm of Shapiro [11], the SPIHT algorithm [12], or a standardized algorithm such
as JPEG2000 [13, 14].

The temporal motion-compensated orthogonal transform (MCOT) of [15, 10] forms a natural ba-
sis for robust video coding based on the FlexCode quantizer-based MDC. An MCOT-based platform
concentrates the signal energy in a small number of dimensions, and does not suffer from error prop-
agation. Combining this platform with the near-optimal performance and flexibility of the FlexCode
quantizer-based MDC, leads to a robust MDC that is scalable in both robustness and quality. The
system is described in the next section.

2.3 Description of the Coding Algorithm

In this section, the architecture of the FlexCode coding algorithm is presented. Fig. 2.1 outlines the
architecture. The encoding algorithm can be divided into two parts. In the first part, a series of
orthogonal transforms are applied to a input video segment: the MCOT and a 2D-wavelet spatial
transform. The temporal MCOT aims to remove the inter-frame dependencies. Its output is a set of
images for each subsequent block of video frames (for example 8 or 16 frames). The 2D-wavelet
transform then reduces the spacial dependencies, separately for each of the images. In the second
part, the resulting coefficients are processed to produce one, two, or more encodings (descriptions)
of sets of coefficients (image components) that make up the image. Fig. 2.1 illustrates the case with
two descriptions. For a given number of encodings, the larger the number of received descriptions,
the better the reconstruction quality of an image component. Each of the descriptions is coded with a
lossless coder to improve coding efficiency.

The MCOT maintains strict orthogonality with arbitrary motion compensation. In its simplest
form it performs a high-band low-band temporal decomposition of a sequence of two images. Let
x

(0)
1 and x

(0)
2 be two vectors representing consecutive frames of a frame sequence of a video signal.
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Figure 2.1: Architecture of the multiple-description video coding.

A sequence of incremental transforms Tκ is then performed such that(
x

(κ+1)
1

x
(κ+1)
2

)
= Tκ

(
x

(κ)
1

x
(κ)
2

)
.

The incremental transform Tκ is orthogonal and differs from the identity matrix in only four elements.
It is designed such that x

(κ+1)
1 differs from x

(κ)
1 in one element and x

(κ+1)
2 differs from x

(κ)
2 also in

one element. Let these elements be i and j, respectively. Then the transform Tκ is of the form(
x

(κ+1)
1,i

x
(κ+1)
2,j

)
=
(

h11 h12

h21 h22

)(
x

(κ)
1,i

x
(κ)
2,j

)
.

The pixel x
(κ)
2,j in x

(κ)
2 is selected to be the pixel that is linked to the pixel x

(κ)
1,i in x

(κ)
1 by the motion

vector. The incremental transform Tκ tries to remove the energy from the pixel x
(κ)
2,j in x

(κ)
2 by using

x
(κ)
1,i , under the constraint that Tκ is an orthogonal transform. This energy must then be added to

the i’th pixel x1;i in the image x
(κ)
1 . All other pixels are not changed. The process is illustrated in

Fig. 2.2, which shows the motion vector as dκ. Subsequent incremental transforms Tκ are selected
to cover all pixels of x2. The full MCOT is T =

∏
κ Tκ. The overall result of the MCOT for a

meaningful image sequence is energy concentration into the x1 component, which can be interpreted
as the temporal “low band” component (image) of the motion-compensated video signal. For a static
picture, the energy concentration forces all energy into the low-band image.

By performing MCOT on subsequent frames of the same band, a temporal subband decomposition
of arbitrary resolution can be obtained (as mentioned before, a typical resolution is 8 or 16 bands).
The finer the subband resolution, the longer the delay of the temporal transform.

For each signal block, the output from the MCOT is a set of images, each representing a motion-
compensated frequency band of the temporal sequence. These images are then subjected to a con-
ventional wavelet transform. We use the Cohen-Daubechies-Feauveau (CDF) 9/7 wavelet that is also
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Figure 2.2: The MCOT.

used in JPEG2000 [13, 14] for this purpose, but other transforms can be used. For each image this re-
sults in a pyramid-like structure of multiple resolutions. As in conventional image coding, the wavelet
transform does not remove all dependencies between the coefficients and the next coding stage must
exploit the remaining spatial dependencies. In our system this coding stages includes the FlexCode
MDC.

The FlexCode MDC is based on scalar quantization and we perform scalar quantization on the
wavelet coefficients. The remaining operations (MDC and removal of remaining dependencies) are
performed on the resulting quantization indices. Thus, the scalar quantizer operating on the coeffi-
cients forms the central quantizer of the MDC system.

The scalar quantization used in FlexCode video coding differs from the systems used in FlexCode
audio coding. As some variation in rate is generally not a problem for video coding applications,
essentially all video coding systems use constrained-entropy coding and the FlexCode system is no
exception to this rule. High-rate theory indicates that uniform quantizers are optimal for constrained-
entropy quantization, independently of the data distribution. However, at low rates dead-zone quan-
tizers, which have an increased step size near zero, perform better (as evaluated with a squared-error
criterion). As many dimensions are assigned a low rate, most video coders use uniform quantizers
with a dead-zone. As mentioned before, a side benefit for MDC is that dead-zone quantizers concen-
trate the energy in fewer dimensions.

In constrained-entropy MDC, a higher than strictly needed number of descriptions result in low
coding efficiency. Each of the descriptions is individually entropy coded for increased efficiency.
However, when a low rate is assigned to a description, as is the case when more descriptions are used,
then its quantization cells (which commonly are a set of disconnected cells) tend to have a larger range
of support. This in turn makes the probability distribution of the indices more uniform and results in
lower coding efficiency. The increased support of the quantization cells leads to increased entropy of
the indices of the side quantizer, increasing the rate required for a given quantizer resolution.

For the commonly occurring packet-loss rates below 20 percent generally one or two descriptions
suffices. For one description the FlexCode system resembles existing MCOT coding systems and
so we focus here on the two-description FlexCode MDC in the context of a central quantizer with a
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dead-zone.
The output from the central quantizer is a set of indices that must be split into two sets of indices

by the MDC algorithm. The index assignment (IA) matrix plays a central role in this operation. We
use a conventional dead-zone quantizer where the deadzone quantization cell is twice the width of the
remaining quantization cells. Thus, the central quantizer is a uniform mid-rise quantizer with the two
cells closest to the origin combined into one cell. The IA matrix must be designed to account for the
dead zone.

Based on the results of [16] (included in deliverable 1.2), we propose a new IA matrix for dead-
zone quantizers that has high regularity. The new IA matrix is restricted to have even number of
diagonals. As in [16], the nonzero elements of each row are obtained by shifting a fixed pattern
by an offset that is a function of the row and column index. Importantly, we use a uniform central
quantizer (which is not what is actually used) and for the IA matrix and then note that the indices
falling in the deadzone (e.g., -1 and 0) are both mapped into one reconstruction index to obtain the
dead-zone central quantizer that is actually used. The regularity of the IA matrix enables the on-line
generation of the IA matrix and allows the MDC algorithm to adapt to the environment. The column
index of the IA matrix equals the first side quantizer index. However, in contrast to conventional
IA matrices, the mapping from the row index to the second side quantizer index is surjective. In
effect, the mapping from the row index to the second side quantizer index skips a step around the
central cell. Thus, the main difference with [16] is that two rows are associated with the same (side-
quantizer) index. Using this setup, the mapping between the indices of the side quantizers and the
index of the central quantizer remains bijective as is desired for good performance (as central index
0 and 1 are both associated with the deadzone cell) and as is the case for conventional MDC. Note
that the two side descriptions are now not perfectly balanced as is usually the case. The row pattern
and the column pattern are generally symmetric. Thus, the centroid of each pattern sits in the middle
of the pattern. An example of a four-diagonal IA matrix is shown in Fig. 2.3. The column pattern
is [ −3 −1 0 2 ], of which the centroid is -0.5. It is easily seen that the central indices -1 and 0
(together representing the deadzone) both produce column index 0 and row index 0.
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Figure 2.3: The IA matrix for the four-diagonal case. Note that both central index -1 and 0 refer
to the deadzone. (a): The original IA matrix. (b): The column pattern after shifting
columns. (c): The row pattern after shifting rows.

After the wavelet transform significant dependencies remain in the coefficients. These dependen-
cies are accounted for in the lossless coding of the side quantization indices. As the number of side
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quantization indices is large, and as the dependencies are between scales, it is not straightforward to
use generic lossless coding approaches, such as arithmetic coding, range coding, or Huffmann cod-
ing, to account for these dependencies. It is more natural to use an approach that has been proven to
account for dependenceis between wavelet coefficients. To this purpose we treat the indices as coef-
ficient values. It is then possible to use the SPIHT algorithm of Said and Pearlman [12] to perform
lossless coding.

It is justified to treat the side-quantizer indices as input to SPIHT since these quantizer indices
specify a reconstructed image and since the reconstruction points of the side quantizers correspond
to a uniform quantizer or an approximation thereof (as was seen in the discussion of the IA matrix).
As the quality of the decoded “side” images increases with increasing redundancy, the dependencies
are better retained in the side descriptions when the redundancy level is high. Thus, the dependencies
in the wavelet coefficients are most easily exploited in the side descriptions if the MDC is aimed at
relatively high packet loss rates. That is, the increased support of the side quantizer cells results in
an increased entropy of the vector of side quantization indices. This argument is a straightforward
generalization of the earlier argument that the incrased support of the quantization cells leads to
increased entropy of the individual indices.

We note that the SPIHT algorithm is inherently a bit-plane coding algorithm. This implies that
our MDC facilitates the midstream stripping of bit-planes. Thus, our algorithm allows the real-time
optimization of the encoder for the rate and packet-loss rates specified, and it also allows the stripping
of bit planes from the transmitted bit stream.

2.4 Configuration and Results

The described FlexCode video coding system permits a large range of configurations. The config-
urations include a trade-off between performance, computational effort, memory requirements, and
delay. The first configuration described below is aimed at streaming applications. The main contribu-
tion to the computational effort is associated with the motion estimation, which is essential for good
performance, but which is not described in this report. However, we can conclude that the settings of
the algorithm do not affect overall computational complexity significantly.

We created an MDC system and a reference single-description system (which is optimal for no
packet loss). The implementation was set up for the QCIF formatted input (144 × 176 pixels). We
used a block size (group) of eight frames for the temporal MCOT. All images resulting from the
MCOT were subjected to a four-scale Cohen-Daubechies-Feauveau (CDF) 9/7 wavelet decomposi-
tion. The resulting low-low band region was of size 9× 11 pixels. Each pixel in the low-low band is
the root of a tree structure of the SPIHT algorithm, resulting in 99 tree structures. These tree struc-
tures are then grouped randomly and put into different packets [17]. As a result, each packet can be
processed independently at the receiver side, making the coding system more robust. For the experi-
ments, 33 packets were generated for the eight images of a group of frames for the single-description
case. Each image contributes three structures to each packet. Thus, each packet contains 24 tree struc-
tures, three from every frame. Uniform scalar quantization (with a deadzone) and index assignment
mapping are performed to all transformed coefficients to generate two descriptions. By distributing
the two descriptions into different packets, 66 packets in total are produced for the two-description
case for each eight-frame group.

As input for the experiments we used the video sequence “Foreman”. The MDC video coder was
first applied to process the video sequence. The average bit rate for each frame was computed and the
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same average overall rate was imposed on the single-description video coder. The motion information
was assumed to be known at the decoder for both the MDC and the single-description video coder.

Both informal viewing and PSNR results confirm that for the same overall rate MDC can perform
significantly better than single-description coding when packet losses occur. Informal viewing shows
that at 10% and 15% packet-loss rate the two-description based system performs significantly better.
Figure 2.4 shows the PSNR performance of the single-description and two-description systems at
10% packet-loss rate. The improvement when using MDC is similar at 15% packet-loss rate. As
expected, at zero packet-loss rate the single-description system performs visibly better. Somewhat
surprisingly, in terms of PSNR the advantage of the single-description system over the MDC system
at zero packet loss is only about 1.5 dB.
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Figure 2.4: The PSNR for the Foreman sequence for two systems. Excluding motion information, the
bit rate is 0.68 bits per pixel and the packet loss rate is 10% for both systems. The better
performing signal is the MDC system, and the other system is the single description
system.

2.5 Conclusions

We have shown how the scalable, quantizer-based FlexCode MDC [16] (see also deliverable 1.2) can
be integrated in a temporal-transform based video coding system aimed at streaming applications.
The algorithm can be optimized instantaneously to match the rate and packet-loss rate specified, and
bit-planes can be dropped from the streams anywhere during the transmission process. The advantage
of the FlexCode MDC method over other MDC methods used in video coding is that the FlexCode
method, as it is quantization-based, is asymptotically optimal. The relatively high rates per dimension
required for the good performance of such a system are naturally provided by a coding architecture
that concentrates the energy (rendering few high-rate and many zero-rate dimensions). This means
that the FlexCode MDC is a natural companion for the motion compensated orthogonal transform
introduced in [15, 10]. The experimental results confirm that the system provides good performance.
The arrangement is particularly attractive for situations where the channel descriptions are inherently
fuzzy, such as broadcast and multicast. For these applications, it likely is beneficial to extend the
system to include asymmetric MDC systems.
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