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ABSTRACT

Recent results have shown that generalK-channel
multiple-description-coding (MDC) approaches often
have significant advantages over conventional two-
channel MDC methods. We provide new asymptotic re-
sults to describe the performance of a generalK-channel
symmetric MDC lattice vector quantizer (MDLVQ).
We consider a memorylessL-dimensional source with
probability density functionf and differential entropy
h(f) <∞. We control the redundancy with a parameter
a ∈ (0, 1) and consider a symmetric MDC with aK-tuple
of {R, R, · · · , R} as side quantizer rates. We show that
if κ out of K descriptions are received, then the central
distortionD(K,K) and the side distortionsD(K,κ) satisfy

lim
R→∞

D(K,K)22R[1+a(K−1)] = G(Λ)22h(f),

lim
R→∞

D(K,κ)22R(1−a) = C(K, κ)G(SKL−L)22h(f),

whereC(K, κ) = K−κ
κ K−

K
K−1 . G(Λ) is the normal-

ized second moment of a Voronoi cell of the latticeΛ and
G(SKL−L) is the normalized second moment of a sphere
in KL − L dimensions. We use our results to illustrate
some relevant trade-offs that are made in configuring an
MDC.

1. INTRODUCTION

We consider encoding of a memoryless source with prob-
ability density functionf , differential entropyh(f) <∞,
and the mean squared-error distortion measure usingK-
channel multiple description coding (MDC) scheme. As a
joint source-channel coding method, MDC aims at com-
bating packet losses by exploiting network diversity. It
generates a plurality of descriptions of a source sequence
and transmits each description over independent erasure
channel to the receiver side. The most common scenario
is the case that all the channels are equivalent, which we
will focus on in the paper. The system is designed in the
way that the reconstruction quality gracefully improves
when the number of received descriptions increases. This
naturally prompts the question of how to distribute the re-
dundant information among the descriptions efficiently to
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control the distortion v.s. number of received descriptions
trade-off. Depending on the way of managing redundant
information, existing MDC systems can be grouped into
three categories: quantizer-based, transform-based and
source-channel erasure codes based. Our work concen-
trates on lattice vector quantization which falls into the
first category.

Since the pioneer work of [1] where a practical scalar
quantization-based MDC (MDSQ) method is first proposed,
many researches have been conducted focusing on design-
ing efficient quantization-based MDC algorithms. The de-
sign of MDSQ is essentially converted to construct good
index assignment matrices for two channel case (see [2],
[3] and [1]) or index assignment arrangements for multi-
channel case (see [4]). Especially, the designing problem
of MDSQ for two channel case is well understood [5],[6].
Suppose a multiple-description encoder send information
over each channel at a rate ofR bits per sample. The
performance of the system is measured by a three-tuple
(R, D(2,1), D(2,2)) whereD(2,1) is one-channel distortion
(or side distortion) andD(2,2) is two-channel distortion.
The work of [6] showed that for an entropy-constrained
multiple-description encoder, the distortions satisfy

lim
R→∞

D(2,2)22R(1+a) =
1

4

(

22h(f)

12

)

(1)

lim
R→∞

D(2,1)22R(1−a) =

(

22h(f)

12

)

, (2)

wherea ∈ (0, 1) is the parameter which controls the re-
dundant information between the two descriptions.

It is well known that vector quantization has thespace
filling advantage over scalar quantization [7]. This is be-
cause one has the freedom to construct cell shapes that
are more ”spherical” than a hypercube in higher dimen-
sional space. Specifically, for the scenario of one chan-
nel entropy-coded atR bits per sample, when using an
L−dimensional latticeΛ as a codebook the distortion
DV (R) related with the distortion ofDS(R) of scalar
quantizer by

lim
R→∞

DV (R)

DS(R)
=

G(Λ)

1/12
,

where G(Λ) is the normalized second moment of a
Voronoi cell of the latticeΛ. It has been shown [8] that



good lattices exist that satisfyG(Λ) → 1
2πe asL → ∞.

Lattices are commonly used in the design of MDC al-
gorithms (MDLVQ) to gain quantization efficiency over
MDSQ [3]. As in MDSQ, the main design task in
MDLVQ is to construct a good index assignment. The per-
formance of a MDLVQ method for the two-channel case
was analyzed in [3], culminating in the relation

lim
R→∞

D(2,2)22R(1+a) =
1

4
G(Λ)22h(f), (3)

lim
R→∞

D(2,1)22R(1−a) = G(SL)22h(f), (4)

where G(SL) is the normalized second moment of a
sphere inL dimensions. As compared to (1)–(2), both
the central and side decoders exhibit a reduction in gran-
ular distortion. Surprisingly, the side distortion is char-
acterized byG(SL) and is unrelated to the applied lattice
structure.

An alternative characterization of the performance of
a practical MDC system is the product of the central and
side distortions. The theoretical lower bound of the prod-
uct for a scalar Gaussian source with varianceσ2 satis-
fies [6]

D(2,2)D(2,1) ≥
σ4

4
2−4R.

Suppose the rateR per channel is increased by1/2 bit,
for a total increase of one bit. From (1)-(4) it is then
seen that both the central and the side distortion decrease
by 2−(1+a) and2−(1−a), respectively. Although the de-
creases in rate differ, the product is1/4. It is well known
that for a single-description high resolution quantizer, an
extra bit reduces the distortion also by1/4. This naturally
motivates the question of what happens to the product of
the distortions for theK-channel MDC system.

A K-channel MDC scheme exploits additional net-
work diversity to address packet loss, compared to the
two-channel MDC scheme. The process of creatingK de-
scriptions increases the flexibility in designing the coding
system. A general K-channel MDLVQ quantizer was first
proposed in [9]. The method was designed for any lat-
tice structure and any number of descriptions. The work
was further extended in [10], where the search complexity
for good index assignment is reduced significantly. [10]
provides an asymptotic analysis but the geometrical inter-
pretation of the result is not straightforward.

The goal of this paper is to provide a new performance
analysis for a general method of constructingK-channel
MDLVQ system, as described in [10]. The central dis-
tortion D(K,K) is easily evaluated within the framework
of high-rate quantization theory. However, the analysis of
side distortions is not trivial. Our new derivation is based
on a geometrical argument, making it relatively straight-
forward to understand. It shows that the side distortions
D(K,κ), 0 < κ < K, are characterized byG(SKL−L),
the normalized second moment of a sphere inKL − L
dimensions.

2. PRELIMINARIES

Suppose a sequence of independent identically distributed
(iid) random variables with probility density function (pdf)

f are generated by an information source. We segment the
data intoL-dimensional vectorsX = (X1, X2, . . . , XL)T

and denote the pdf of the vector byfX , which is thus given
by

fX = ΠL
i=1f(xi).

The vectorX is quantized to the nearest pointλc in a cen-
tral codebookΛc ⊂ R

L. We denote the (central) quan-
tization operation byλc = Q(X). Information about
the central codewordλc is then embedded inK descrip-
tions, which are transmitted independently acrossK era-
sure channels. This is performed through a labeling func-
tion α followed by entropy coding. The functionα de-
fines a bijective mapping from the cental codebook toK
side codebooks, i.e.α : Λc → Λ0 × Λ1 . . . × ΛK−1.
Let λ|K−1

0 denote aK-tuple (λ0, λ1, . . . , λK−1), where
λi ∈ Λi. Thus, the labeling function links each element
λc ∈ Λc with a correspondingK-tuple λ|K−1

0 . We de-
note thei’th component ofα as αi, i.e. λi = αi(λc),
i = 0, 1, . . . , K − 1.

In this paper we analyze the behavior of MDC systems
under the high-rate assumption. The assumption implies
that the pdf of the source is approximately constant in a
quantization cell. Gersho [11] conjectured that the opti-
mal entropy-constrained high-rate vector quantizer for a
uniform distribution over a convex bounded set has a par-
tition whose quantization cells are congruent with some
tessellating convex polytope. This establishes the basis
for applying lattice geometry in vector quantization sys-
tems.

We study the scenario where both the central and side
codebooks are lattices. The central codebookΛc is a lat-
tice with a fundamental region of volumeν = det(Λc).
The K side codebooks are drawn from a geometrically-
similar and clean sublatticeΛs ⊆ Λc [12] of indexN =
|Λc/Λs|, i.e.,Λi = Λs, i = 0, . . . , K − 1. Thus,Λs has a
fundamental region of volumeνN . We consider the case
that the channel conditions are symmetric, corresponding
to an equal rate allocation across allK channels.

At the receiver side, if all theK descriptions are re-
ceived, the inverse labeling functionα−1 uniquely deter-
mines the central codewordQ(X). Because of packet
loss, the decoder may receives only a subset of theK de-
scriptions. Supposeκ of K descriptions are received. Let
L(K,κ) denote the set consisting of all the possible con-
figurations. Each elementl ∈ L(K,κ) specifies a partic-
ular combination of the received descriptions, denoted as
{λlj , j = 1, 2, . . . , κ}. There are|L(K,κ)| =

(

K
κ

)

such
combinations. In principle, there should be

(

K
κ

)

decoding
subsystems for a particularκ. To address the decoding
complexity, a simple decoding rule was proposed in [9].
When0 < κ < K, the sourceX is reconstructed by aver-
aging of the received descriptions, i.e.

x̂ =
1

κ

κ
∑

j=1

λlj . (5)

The distortion is measured as‖ x − x̂ ‖2, where‖ · ‖
denotes thel2 norm. Note that this decoding process is in-



consistent. If allK descriptions are received, the inverse
mappingα−1 is used, but otherwise averaging is used. By
allowing this decoding inconsistency, the design complex-
ity for the mappingα (the index assignment) is signifi-
cantly reduced. We useD(K,κ) to denote the (mean) dis-
tortion whenκ out ofK descriptions are received.

Generally speaking, once the side codebooks are fixed,
the transmission rate per channel is determined [3]. On
the other hand, fixing the central codebook specifies the
central distortionD(K,K). However, the side distortions
D(K,κ), 0 < κ < K, depend on the labeling functionα.
The main task in designing practical MDLVQ systems is
to find theα (the index assignment) that minimizes the
side distortions.

3. INDEX ASSIGNMENT

In this section, we present a simple but efficient index-
assignment method proposed in [10]. The simplicity of
the method enables us to trace the geometrical properties
of the index assignment.

The Voronoi cell of a lattice pointλ ∈ Λ is formally
defined as

V (λ) =
{

x :‖ x − λ ‖2≤‖ x − λ′ ‖2, λ′ ∈ Λ
}

, (6)

where the ties are broken in a predefined manner. We
use subscripts to distinguish the Voronoi cells of different
lattices, e.g. Vc(λc) is the Voronoi cell for the central-
lattice pointλc ∈ Λc. To simplify the notation, a discrete
Voronoi cell for everyλs ∈ Λs is defined asV d(λs) =
Vs(λs) ∩ Λc. As Λs is a sublattice ofΛc, the distribution
of central points within every Voronoi cell ofΛs is the
same. This enables the index assignment to be designed
by considering only the central points within one discrete
Vononoi cell, e.g.V d(0). The index assignment can then
be extended to cover all discrete Voronoi cells by transla-
tion,

α(λc + λs) = α(λc) + λs, for all λs ∈ Λs. (7)
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Figure 1.Three description index assignment for the latticeA2

with indexN = 73. Points ofΛc, Λs andΛs/3 are denoted by
·, • and×, respectively.

We start by introducing a so-calledscaled sublattice
Λs/K [10], which is defined as

Λs/K =
1

K
Λs. (8)

It is immediate thatΛs ⊂ Λs/K . DenoteΛK
s as the K-ary

Cartesian product ofΛs, i.e. ΛK
s =

∏K−1
i=0 Λs. One can

easily show that the centroid of anyK-tuple fromΛK
s is a

scaled sublattice point. An onto mapping functionβ from
ΛK

s to Λs/K can then defined as

β(λ|K−1
0 ) =

1

K

K
∑

i=1

λi. (9)

It computes the centroid of aK-tuple λ|K−1
0 ∈ ΛK

s . It
is obvious that each lattice point ofΛs/K is associated
with manyK-tuples. The scaled sublatticeΛs/K can be
interpreted as a centroid distribution of theK-tuples over
the spaceRL. Thus, by exploitingΛs/K , theβ function
provides a unified way to arrange theK-tuples used for
index assignment. One observes that theK-tuples with
the same centroid have different ”spread”, i.e. some are
more compact than others. A distance criterion can be
defined to measure the spread of aK-tuple [10]

J(λ|K−1
0 ) =

K−1
∑

i=0

‖ λ̄|K−1
0 − λi ‖

2 , (10)

whereλ̄|K−1
0 denotes the centroid of thisK-tuple. We

refer to this criterion asspread measurement. Note that
Λs/K is obtained by scalingΛs by a factorK. This in-
dicates that the fundamental Voronoi cellVs(0) contains
KL different scaled sublattice points up to translations
{λs − λ′

s : λs, λ
′
s ∈ Λs}. Depending onK, it might hap-

pen that the lattice points ofΛs/K lie on the cell boundary
of Λs. The relationship between the central lattice and the
scaled sublattice is studied in [10], which is characterized
in the following proposition.

Proposition 3.1 If Λs is a clean sublattice ofΛc, then
no central-lattice points ofΛc lie on the cell boundary of
Λs/K .

The index assignment is performed with the aid of the
scaled sublattice. First, the central point is quantized tothe
nearest point ofΛs/K . This establishes the relationship
that each point ofΛs/K is associated with many central
points. Proposition3.1 guarantees that no central points
lie on the cell boundary ofΛs/K , which simplifies the in-
dex assignment. To label the central points, theK-tuples
with a centroidλs/K can be ordered according to their
cost by using (10). The central points within the Voronoi
cell Vs/K(λs/K) are then assigned to theK-tuples from
the ordered sequence of tuples. This is a natural choice
as aK-tuple with small ”spread” should be favored in the
index assignment. In this case, when some descriptions
are lost, the averaging operation in (5) likely results in
a reconstruction point close to the corresponding central
point. An example for a three-channel labeling scenario
using a hexagonal lattice is displayed in Fig. 1. By ap-
plying (7), all central points can be labeled systematically.
This approach guarantees that noK-tuple is reused, thus
assuring that the functionα is a one-to-one mapping.



4. ASYMPTOTICAL ANALYTIC PERFORMANCE

We now provide a new performance analysis for the pre-
sented index-assignment method. By algebraic manipula-
tion, we associateK-tuples with points of a new lattice in
KL − L dimensions. This new geometric property then
leads to a closed-form expression of the distortions.

First we derive expressions for the rate (in bits per di-
mension). LetRc be the central rate required to address
the central codebookΛc. Let H(·) denote the entropy of
a random variable. By exploiting high-rate quantization
theory,Rc = H(Q(X))/L can be approximated as

Rc ≈ h(f) − (1/L) log2(ν). (11)

The transmission rateR per description of the multiple-
description system can be evaluated by considering the
quantityH(αi(Q(X)))/L. Strictly speaking, the rateR is
closely related with the index assignment approach. How-
ever, again by assuming high-rate quantization, it can be
shown [3] thatR has a simple expression, given as

R ≈ h(f) − (1/L) log2(Nν). (12)

Note that the termNν is simply the volume of the fun-
damental regionVs(0) of the sublatticeΛs. Thus,R is
essentially determined by the side lattice codebook. From
(11) and (12), it is seen that the relation betweenRc and
R is

R = Rc − (1/L) log2(N). (13)

Since the total rate in the multiple-description system is
KR = KRc−(K/L) log2(N), the rate overhead is given
by (K − 1)Rc − (K/L) log2(N).

Next we study the centralD(K,K) and side distortions
D(K,κ), 0 < κ < K. The central distortion (per dimen-
sion) is determined by the central codebookΛc, which sat-
isfies

D(K,K) ≈ G(Λ)ν2/L. (14)

The regularity of the described labeling function leads to
a simplicity of the expressions of the side distortions. We
useD

(K,κ)
l to denote the distortion for a particular con-

figurationl from the set of configurations whereκ out of
K descriptions are received, i.e.l ∈ L(K,κ). By applying
(5),D(K,κ)

l can be expressed as

D
(K,κ)
l =

1

L

∑

λc∈Λc

∫

Vc(λc)

fX(x) ‖ x −
1

κ

κ
∑

i=1

λli ‖
2 dx.

(15)
Thus, the (mean) side distortionD(K,κ) can be expressed
in terms ofD(K,κ)

l as

D(K,κ) =
1

(

K
κ

)

∑

l∈L(K,κ)

D
(K,κ)
l . (16)

Under the high rate assumption, one can show that the side
distortion can be approximated as [9]

D(K,κ) ≈ D(K,K) +
1

(

K
κ

)

1

NL

∑

λc∈V d(0)

∑

l∈L(K,κ)

[

‖ λc −
1

κ

κ
∑

i=1

λli ‖
2

]

. (17)

The second term in (17) can be simplified further (see [9],
[10]), which leads to a new expression for the side distor-
tion

D(K,κ) ≈ D(K,K) + D1 +
K − κ

Kκ(K − 1)
D2 (18)

where

D1 =
1

NL

∑

λc∈V d(0)

‖ λc − λ̄(λc) ‖
2 , (19)

D2 =
1

NL

∑

λc∈V d(0)

K−1
∑

i=0

‖ λi(λc) − λ̄(λc) ‖
2 , (20)

where theK-tuple assigned toλc is {λi(λc)}
K−1
i=0 and

λ̄(λc) = 1
K

∑K−1
j=0 λj(λc). Interestingly, the side distor-

tion is not dependent on the source pdf. It is fully deter-
mined by the lattice structure and the index assignment.

Next, we investigate the index assignment to derive
analytic expressions for the side distortions. From (10) it
follows thatD2 is essentially the summation of the spread
measurements. As the exploitedK-tuples are searched
and arranged w.r.t. their centroids described byΛs/K , D2

can be further decomposed with the aid ofΛs/K . We
consider the spread measurement for a generalK-tuple.
Suppose the generator matrix of the sublatticeΛs is γG,
whereG is selected such that the matrixM = GGT is
an integer matrix. A lattice generated with such matrix
is called anintegral lattice [12]. Thus, we haveNν =
√

γ2L|M |, where|M | denotes the determinant ofM [12].
Denote theK side lattice codebooks as

Λi =
{

ZT
i γG| ∀Zi ∈ Z

L
}

, i = 0, 1, . . . , K−1, (21)

whereZi specifies the coordinates in thei-th codebook.
From (8), the scaled sublattice takes the form of

Λs/K =

{

1

K
WT γG| ∀W ∈ Z

L

}

. (22)

Using (21) and (22), the spread measurement in (10) can
then be reformulated as

J(λ|K−1
0 ) =

K−1
∑

i=0

‖ ZT
i γG −

1

K
WT γG ‖2 ,(23)

subject to
1

K
WT γG =

1

K

K−1
∑

i=0

ZT
i γG.

Using algebra, it can be shown that (23) can be further
simplified to

J(λ|K−1
0 ) = γ2(Z − W̌ )T M∗(Z − W̌ ), (24)

where

M∗ =

















2 1 1 . . . 1
1 2 1 . . . 1

1 1 2
. . .

...
...

...
. . .

. . . 1
1 1 . . . 1 2

















⊗ M , (25)



Z = [ ZT
0 ZT

1 . . . ZT
K−2 ]T , (26)

W̌ =
1

K
[ WT WT . . . WT ]T . (27)

The operator⊗ is the Kronecker product [13]. The ma-
trix before⊗ is the Gram matrix of anAK−1 lattice [12].
The matrixM∗ is a symmetric matrix with dimensional-
ity (K − 1)L. Equation (24) essentially defines a new lat-
tice Λtuple with a translations = γG∗T W̌ , whereM∗ =
G∗G∗T . We refer the new lattice as atuplelattice sinceK-
tuples are essentially associated with lattice points. The
Gram matrix ofΛtuple is γ2M∗. WhenL = 1, the tuple
matrixΛtuple reduces toAK−1 lattice. The expression in
(24) can be interpreted as the squaredl2 norm of a point
of Λtuple − s. The search for goodK-tuples is essentially
reduced to selecting the points ofΛtuple − s with small
squaredl2 norms. The translation vectors is fully deter-
mined by a scaled sublattice point. By observing (24) and
(27), one can see that when a component of the coordinate
vectorW is modified by adding a multiple ofK, the trans-
lated lattice geometryΛtuple − s remains the same. There
areKL different translated lattice geometries. Informally
speaking, this is because the relative arrangement of the
scaled sublattice points andΛs exhibits periodicity over
space.

Upon relatingK-tuples with points of a tuple lattice
Λtuple, we are ready to analyze the side distortions (18).
As the points from bothΛc andΛs/K are uniformly dis-
tributed over the space, we can assume that each Voronoi
cell Vs/K(λs/K) contains approximatelyN/KL central
lattice points. This holds when the index valueN is large.
Denote theN/KL K-tuples exploited to label the cen-
tral points within a Voronoi cellVs/K(λs/K) asλ|K0 (i),
i = 0, 1, . . . , N/KL − 1, whereλ̄|K0 (i) = λs/K . The
sum of spread measurements of theseN/KL K-tuples
can be parameterized by studyingΛtuple. As N is suffi-
ciently large, theN/KL selected points ofΛtuple − s can
be approximated by theN/KL selected points ofΛtuple

in computing the sum of spread measurements. The analy-
sis can be simplified by only considering the situation that
λ̄|K−1

0 (i) = 0, i = 0, 1, . . . , N/KL − 1. Denote the theta
series [12] ofΛtuple asΘΛtuple

(z) = γ2
∑∞

j=0 Bjq
j , where

q = eiz. The coefficientBj indicates the number of points
in thej-th shell. Thus, we can write

N/KL
−1

∑

i=0

J(λ|K0 (i)) = γ2
E

∑

j=0

jBj , (28)

where we assume thatN/KL =
∑E

j=0 Bj . The parame-
ter E indicates the maximum shell index. To further sim-
plify (28), we first introduce a widely exploited approxi-
mation [3] in the following proposition.

Proposition 4.1 Let ν′ be the volume of a Voronoi cell of
an integral latticeΛ in R

L. DenoteVL as the volume of a
sphere of unit radius inRL. The number of lattice points
S(n) in the firstn shells of the latticeΛ is approximately

S(n) = VLn
L
2

ν′
(1 + o(1)), wherelimn→∞ o(1) = 0.

The result ofProposition4.1 provides a simple expres-
sion for the number of points within the firstn shells of a
lattice. This enables one to approximate the two terms
∑E

j=0 Bj and
∑E

j=0 jBj using simple expressions [3].
After some algebra, one can show that (28) can be ap-
proximated as

N/KL
−1

∑

i=0

J(λ|K0 (i)) ≈ γ2 |M
∗|

1
(K−1)L

V
2

(K−1)L

(K−1)L

·
(K − 1)L

(K − 1)L + 2

·K−L− 2
K−1 · N1+ 2

(K−1)L , (29)

where|M∗| = KL(Nν
γL )2(K−1). It is known thatV(K−1)L

can be expressed in terms ofG(SKL−L), the normalized
second moment of a sphere in(K − 1)L dimensions, by

V
2

(K−1)L

(K−1)L =
1

G(SKL−L)((K − 1)L + 2)
. (30)

Based on (29) and (30), the distortionD2 takes the form

D2 ≈ (K − 1)K− 1
K−1 (Nν)

2
L G(SKL−L)

N
2

(K−1)L (1 + o(1)). (31)

From (19) and (20), it is seen thatD1 andD2 are similar.
Thus, a similar analysis can be performed on quantityD1,
resulting in

D1 ≈ K−2(Nν)
2
L G(SL)(1 + o(1)). (32)

The side distortionD(K,κ) is thus fully specified.
We now study the relationship between rates and dis-

tortions. First, the central distortion can be expressed in
terms ofRc as

D(K,K) = G(Λ)22(h(f)−Rc).

Let N = 2La(K−1)R. It follows from (13) thatRc =
R[1+a(K−1)]. Using (11) and (14) the central distortion
can be rewritten as

D(K,K) = G(Λ)22h(f)2−2R[1+a(K−1)]. (33)

Using (11), (31) and (32), the two distortionsD1 andD2

can be expressed in terms ofR as

lim
R→∞

D12
2R = K−2G(SL)22h(f)

lim
R→∞

D22
2R(1−a) = (K − 1)K−

1
K−1 G(SKL−L)22h(f).

Note that the distortionD2 decays slower thanD1 and
D(K,K), and thus dominates the side distortionD(K,κ).
The final result ofD(K,κ) is

lim
R→∞

D(K,κ)22R(1−a) =
K − κ

κ
K−

K
K−1 G(SKL−L)22h(f).

(34)
The parametera controls the redundant information be-
tween the K descriptions. We can see that the side dis-
tortionsD(K,κ), 1 ≤ κ < K are characterized by the



normalized second moment of a sphere inKL−L dimen-
sions. Suppose eachR is increased by1/K bit, then the
central distortion is decreased by2−

2
K

[1+a(K−1)] and the
side distortionD(K,κ) by 2−

2
K

(1−a) for any a ∈ (0, 1).
Thus, the product of the decreasing factors is

2−
2
K

[1+a(K−1)]2−
2
K

(1−a)(K−1) =
1

4
. (35)

This shows thatK-channel multiple-description quantizer
is efficient as compared to (1)–(4) for the two channel
case. The product of the distortions takes the form of

lim
R→∞

K
∏

i=1

D(K,i)22RK

= K−KG(Λ)[G(SKL−L)]K−122Kh(f). (36)

It is seen that, as expected, the parametera is not involved
in the product, which is consistent with the two-channel
results in [3].

One observes that whenκ increases from 1 toK − 1,
the side distortion is reduced by a factorK−κ

κ . The distor-
tion reduction rate fromK −1 to K exhibits a singularity.
This might be due to the fact that a decoding inconsistency
is introduced in the system. It is known that asL → ∞,
G(Λ) → 1/2πe andG(SL) → 1/2πe, which render min-
imum central and side distortions. This allows us to study
the distortion loss due to dimensionality. From (33), the
loss forD(K,K) can be expressed as

lim
R→∞

D(K,K)(R, L)/D(K,K)(R,∞) = 2πeG(Λ).

This indicates that the loss in central distortion is lattice
dependent, but channel-number independent. By consid-
ering (34), the side distortion loss takes the form of

lim
R→∞

D(K,κ)(R, L)/D(K,κ)(R,∞) = 2πeG(SKL−L),

where1 ≤ κ < K. It is seen that the side distortion
loss is independent of the number of received descrip-
tions. The loss depends on the dimension of the lattice
and the channel numberK. Again, a singularity appears
from κ = K − 1 to K. Fig. 2 displays the distortion loss
vs dimensionality for different number of channels.

5. CONCLUSION

We have studied a general MDLVQ scheme from a geo-
metrical view point. We have found thatK-tuples used for
index assignment can be associated with points of another
lattice of higher dimensionality than that of the quantiza-
tion space. With the aid the newly obtained geometry, we
showed that the side distortions are characterized by the
normalized second moment of a sphere in the same di-
mensionality as that of the new lattice. A major result is
that the product of all distortions of the MDLVQ system
is asymptotically independent of the redundancy between
the descriptions.
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Figure 2. The central and side distortion loss as a function of
the lattice dimensionalityL.
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