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ABSTRACT control the distortion v.s. number of received descripion

Recent results have shown that genekachannel  trade-off. Depending on the way of managing redundant
multiple-description-coding (MDC) approaches often information, existing MDC systems can be grouped into
have significant advantages over conventional two- three categories: quantizer-based, transform-based and
channel MDC methods. We provide new asymptotic re- Source-channel erasure codes based. Our work concen-
sults to describe the performance of a genéfathannel trates on lattice vector quantization which falls into the
symmetric MDC lattice vector quantizer (MDLVQ). first category.

We consider a memoryles-dimensional source with Since the pioneer work of [1] where a practical scalar
probability density functionf and differential entropy ~duantization-based MDC (MDSQ) method s first proposed,
h(f) <oco. We control the redundancy with a parameter many researches have been conducted focusing on design-
a € (0,1) and consider a symmetric MDC withg-tuple ing efficient quantization-based MDC algorithms. The de-

of {R,R,--- , R} as side quantizer rates. We show that sign of MDSQ is essentially converted to construct good
if » out of K descriptions are received, then the central index assignment matrices for two channel case (see [2],
distortion D(¥-X) and the side distortion® %) satisfy [3] and [1]) or index assignment arrangements for multi-
channel case (see [4]). Especially, the designing problem
Jim DK Q2RAFalK=D] — G(7)22h(), of MDSQ for two channel case is well understood [5],[6].
' Suppose a multiple-description encoder send information
lim DER)2R1-0) — O(K | k)G (Skp_1)22"), over each channel at a rate 8f bits per sample. The
oo performance of the system is measured by a three-tuple
whereC (K, k) = %K‘%. G(A) is the normal- (R, D1V D2)) whereD?) is one-channel distortion

ized second moment of a Voronoi cell of the lattitand (or side distortion) and>(??) is two-channel distortion.
G(Skr-r) is the normalized second moment of a sphere The work of [6] showed that for an entropy-constrained
in KL — L dimensions. We use our results to illustrate multiple-description encoder, the distortions satisfy
some relevant trade-offs that are made in configuring an

MDC. lim D®@292R(+a) _ 1(22h(f)) "
1. INTRODUCTION gl 1 —
| | i i D292R(1-a) 92h(f)
We consider encoding of a memoryless source with prob- lim D@V @ _ | o
fimee 12

ability density functionf, differential entropyh(f) <oo,
and the mean squared-error distortion measure uking wherea € (0, 1) is the parameter which controls the re-
channel multiple description coding (MDC) scheme. As a dundant information between the two descriptions.
joint source-channel coding method, MDC aims at com- Itis well known that vector quantization has thgace
bating packet losses by exploiting network diversity. It filling advantage over scalar quantization [7]. This is be-
generates a plurality of descriptions of a source sequencecause one has the freedom to construct cell shapes that
and transmits each description over independent erasur@re more "spherical” than a hypercube in higher dimen-
channel to the receiver side. The most common scenariosional space. Specifically, for the scenario of one chan-
is the case that all the channels are equivalent, which wenel entropy-coded aR bits per sample, when using an
will focus on in the paper. The system is designed in the L—dimensional latticeA as a codebook the distortion
way that the reconstruction quality gracefully improves Dy (R) related with the distortion oDg(R) of scalar
when the number of received descriptions increases. Thisquantizer by
naturally prompts the question of how to distribute the re-
dundant information among the descriptions efficiently to im Dv(R) = %

R—o0 Ds(R) 1/12'
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good lattices exist that satisty(A) — 5i- asL — oo. f are generated by an information source. We segment the
Lattices are commonly used in the design of MDC al- dataintoL-dimensional vector¥ = (X1, Xa,..., X1)?
gorithms (MDLVQ) to gain quantization efficiency over and denote the pdf of the vector Ify, which is thus given
MDSQ [3]. As in MDSQ, the main design task in by

MDLVQ is to construct a good index assignment. The per- fx =L, fxy).

formance of a MDLVQ method for the two-channel case

. o . The vectorX is quantized to the nearest pontin a cen-
was analyzed in [3], culminating in the relation g point

tral codebookA, c R%. We denote the (central) quan-

lim D@292R(1+a) _ lg(A) A (3) tization operation by)\cl = 9(X). Inform.ation abt_)ut
R—oo 4 the central codeword,. is then embedded ik descrip-
Jim DEV2RA-a)  — G 2% (4)  tions, which are transmitted independently acrissra-

—00

sure channels. This is performed through a labeling func-
where G(Sz) is the normalized second moment of a tion « followed by entropy coding. The functiom de-
sphere inL dimensions. As compared to (1)-(2), both fines a bijective mapping from the cental codeboolsto
the central and side decoders exhibit a reduction in gran-side codebooks, i.ea : A. — Ag X Ay... X Ax_1.
ular distortion. Surprisingly, the side distortion is char | et >\|£<—1 denote aK-tuple (Ao, A1, ..., Ax_1), Where

acterized by(Sr) and is unrelated to the applied lattice ), e A,. Thus, the labeling function links each element
structure. Ae € A, with a correspondinds-tuple \|5~*. We de-

An alternative characterization of the performance of note thei'th component ofa asa;, i.e. A, = a;(Ae),

a practical MDC system is the product of the centraland ; = ¢,1,..., K — 1.
side distortions. The theoretical lower bound of the prod- In this paper we analyze the behavior of MDC systems
uct for a scalar Gaussian source with varian€esatis-  under the high-rate assumption. The assumption implies
fies [6] A that the pdf of the source is approximately constant in a
D22ApED > T 9-4R quantization cell. Gersho [11] conjectured that the opti-
4 mal entropy-constrained high-rate vector quantizer for a
uniform distribution over a convex bounded set has a par-
éition whose quantization cells are congruent with some
tessellating convex polytope. This establishes the basis
for applying lattice geometry in vector quantization sys-
tems.

We study the scenario where both the central and side
codebooks are lattices. The central codebagks a lat-
tice with a fundamental region of volume = det(A.).
The K side codebooks are drawn from a geometrically-
similar and clean sublattick, C A. [12] of index N =
[Ac/Agl i, A =A5,i=0,...,K —1. Thus,A; has a
fundamental region of volumeN. We consider the case
that the channel conditions are symmetric, corresponding
to an equal rate allocation across Allchannels.

At the receiver side, if all thé< descriptions are re-
ceived, the inverse labeling functiem! uniquely deter-
mines the central codewor@(X). Because of packet
loss, the decoder may receives only a subset ofdhae-
scriptions. Suppose of K descriptions are received. Let
L£55) denote the set consisting of all the possible con-
figurations. Each elememte £5%) specifies a partic-
MDLVQ system, as described in [10]. The central dis- ular combination of the received descriptions, denoted as

tortion DUKX) is easily evaluated within the framework  (Mi2J = 1,2,---,x}. There arg L] = () such

of high-rate quantization theory. However, the analysis of combinations. In principle, there should ) decoding
side distortions is not trivial. Our new derivation is based Subsystems for a particular. To address the decoding
on a geometrical argument, making it relatively straight- COMplexity, a simple decoding rule was proposed in [9].
forward to understand. It shows that the side distortions When0 < x < K, the sourceX is reconstructed by aver-

Suppose the rat® per channel is increased hy2 bit,

for a total increase of one bit. From (1)-(4) it is then
seen that both the central and the side distortion decreas
by 2-(1+9) and2-(1-%) respectively. Although the de-
creases in rate differ, the productlig4. It is well known
that for a single-description high resolution quantizer, a
extra bit reduces the distortion also bgd. This naturally
motivates the question of what happens to the product of
the distortions for thé{-channel MDC system.

A K-channel MDC scheme exploits additional net-
work diversity to address packet loss, compared to the
two-channel MDC scheme. The process of creatinde-
scriptions increases the flexibility in designing the cadin
system. A general K-channel MDLVQ quantizer was first
proposed in [9]. The method was designed for any lat-
tice structure and any number of descriptions. The work
was further extended in [10], where the search complexity
for good index assignment is reduced significantly. [10]
provides an asymptotic analysis but the geometrical inter-
pretation of the result is not straightforward.

The goal of this paper is to provide a new performance
analysis for a general method of constructidgchannel

DE®) 0 < k < K, are characterized b§i(Sk 1), aging of the received descriptions, i.e.

the normalized second moment of a spheréih — L L&

dimensions. B=— z; A - (5)
j=

2. PRELIMINARIES

Suppose a sequence of independent identically distributedThe distortion is measured sz — 2 ||?, where|| - ||
(iid) random variables with probility density function )d  denotes thé, norm. Note that this decoding process is in-



consistent. If allk” descriptions are received, the inverse We start by introducing a so-callestaled sublattice
mappinga—! is used, but otherwise averaging is used. By A,k [10], which is defined as

allowing this decoding inconsistency, the design complex- 1

ity for the mappinga (the index assignment) is signifi- Ay = EAS' (8)
cantly reduced. We usB¥-%) to denote the (mean) dis- It is immediate that\, C Ay DenoteA X as the K-ary
tortion whenk out of K descriptions are received. Cartesian product ok, i.e. AKX = Hfigl A.. One can

Generally speaking, once the side codebooks are fixed easily show that the centroid of afg-tuple fromAX is a

the transmission rate per channel is determined [3]. Ongscaled sublattice point. An onto mapping functipfrom
the other hand, fixing the central codebook specifies theAf to A,/x can then defined as

central distortionD*-%) . However, the side distortions K

DR 0 < k < K, depend on the labeling functian BAEY = 1 Z)‘i' (9)
The main task in designing practical MDLVQ systems is K i=1

to find the« (the index assignment) that minimizes the |t computes the centroid of &-tuple \|5 ! € AK. It
side distortions. is obvious that each lattice point df,,x is associated
with many K-tuples. The scaled sublattice, ,, can be

3. INDEX ASSIGNMENT interpreted as a centroid distribution of thetuples over
In this section, we present a simple but efficient index- the spac&”. Thus, by exploiting,, the 3 function
assignment method proposed in [10]. The simplicity of Provides a unified way to arrange tté-tuples used for
the method enables us to trace the geometrical propertieddex assignment. One observes that ii¢uples with

of the index assignment. the same centroid have different "spread”, i.e. some are
The Voronoi cell of a lattice poink € A is formally more compact than others. A distance criterion can be
defined as defined to measure the spread diauple [10]
K-1
V) ={z:lz=AP<|z =X []>,\ € A}, (6) TR =3 INE =N )12, (10)
=0

where the ties are broken in a predefined manner. Wewhere \| 5! denotes the centroid of thi&-tuple. We
use subscripts to distinguish the Voronoi cells of differen yefer to this criterion aspread measurementote that
lattices, e.g.V.(\.) is the Voronoi cell for the central- A,k is obtained by scaling\, by a factork. This in-
lattice pointA. € A.. To simplify the notation, a discrete  gjcates that the fundamental Voronoi celi(0) contains

Voronoi cell for every\s € A, is defined ad/(\;) = KL different scaled sublattice points up to translations
Vs(As) N A.. As A is a sublattice of\., the distribution {As = A, : A, X, € A}, Depending ork, it might hap-

of central points within every Voronoi cell of; is the  pen that the lattice points o, lie on the cell boundary
same. This enables the index assignment to be designegt A . The relationship between the central lattice and the

by considering only the central points within one discrete scaled sublattice is studied in [10], which is charactetize
Vononoi cell, e.g.V¢(0). The index assignment can then i the following proposition.

be extended to cover all discrete Voronoi cells by transla- Proposition 3.1 If A,

. is a clean sublattice of\., then
tion,

no central-lattice points ol\. lie on the cell boundary of

a(Ae + As) = a(A) + A, forall A\; € As. @) Ay

The index assignment is performed with the aid of the
scaled sublattice. First, the central point is quantiz¢deo
nearest point oA,/ x. This establishes the relationship
that each point o\, is associated with many central
points. Proposition3.1 guarantees that no central points
lie on the cell boundary ok, &, which simplifies the in-
dex assignment. To label the central points, Kh¢uples
with a centroid),,x can be ordered according to their
cost by using (10). The central points within the Voronoi
cell V,,x (As/ k) are then assigned to thé-tuples from
the ordered sequence of tuples. This is a natural choice
as aK -tuple with small "spread” should be favored in the
index assignment. In this case, when some descriptions
are lost, the averaging operation in (5) likely results in
a reconstruction point close to the corresponding central
point. An example for a three-channel labeling scenario

f . L] L] L] L] L] L] L] L]
X X @2 using a hexagonal lattice is displayed in Fig. 1. By ap-

plying (7), all central points can be labeled systematycall
Figure 1.Three description index assignment for the lattige This approach guarantees that Retuple is reused, thus

with index N' = 73. Points ofA., A andA,,; are denoted by assuring that the function is a one-to-one mapping.
-,  and x, respectively.



4, ASYMPTOTICAL ANALYTIC PERFORMANCE The second termin (17) can be simplified further (see [9],

[10]), which leads to a new expression for the side distor-
We now provide a hew performance analysis for the pre- tion

sented index-assignment method. By algebraic manipula-

tion, we associaté -tuples with points of a new lattice in DWr) ~ pUSK) 4 D) 4 &Dg (18)
KL — L dimensions. This new geometric property then Kr(K -1)
leads to a closed-form expression of the distortions. where )

Flr_st we derive expressions for the rate (in bits per di- D) = — Z | X — AN |12, (19)
mension). LetR. be the central rate required to address N evd(o)
the central codebook.. Let H(-) denote the entropy of
a random variable. By exploiting high-rate quantization Z Z I Ai( ) 12, (20)
theory,R. = H(Q(X))/L can be approximated as A €va(0) i=0

Re = h(f) — (1/L)logy(v). (11) where theK tuple assigned to\. is {\;(\.)}X,! and

The transmission rat& per description of the multiple- () = %  2ico Aj(Ac). Interestingly, the side distor-

description system can be evaluated by considering thel!on IS N0t dependent on the source pdf. Itis fully deter-
quantity (a;(Q(X)))/L. Strictly speaking, the ratg is mined by the lattice structure and the index assignment.

closely related with the index assignment approach. How-  NEXt, we investigate the index assignment to derive
ever, again by assuming high-rate quantization, it can beanalyuc expressions for_ the side dlstortl_ons. From (10) it
shown [3] thatR has a simple expression, given as follows thatDs is essentially thg summation of the spread
measurements. As the exploitédi-tuples are searched
R~ h(f)— (1/L)logy(Nv). (12)  and arranged w.r.t. their centroids described\by, D-

Note that the termVw is simply the volume of the fun- ~ ¢an be further decomposed with the aid /of . We
damental regiorV/, (0) of the sublattice\,. Thus, R is consider the spread measurement for a gen§ralple.
essentially determined by the side lattice codebook. FromSuppose the generator matrix of the sublatfices 7G,

(11) and (12), it is seen that the relation betwdznand ~ WhereG is selected such that the matil = GG™ is
Ris an integer matrix. A lattice generated with such matrix

R=R,— (1/L)log,(N). (13) is called anintegral lattice[12]. Thus, we haveVy =
/v2L| M|, where| M| denotes the determinant df [12].

Since the total rate in the multiple-description system is Denote thek side lattice codebooks as

KR = KR.—(K/L)log,(N), the rate overhead is given

by (K — 1)R. — (K/L)log,y(N). N ={ZTG| VZ,eZl),i=0,1,...,.K—1, (21
Next we study the centrd)(X-X) and side distortions i ={Z¢l ' bri=0L » (1)

D), 0 < k < K. The central distortion (per dimen- \here 7, specifies the coordinates in tigh codebook.

sion) is determined by the central codebdokwhich sat- From (8), the scaled sublattice takes the form of
isfies
(K.K) o 2/L 1
A S A= {gWmhel weztl. @2
The regularity of the described labeling function leads to K

a simplicity of the expressions of the side distortions. We
useDl(K’”) to denote the distortion for a particular con-
figuration! from the set of configurations whereout of

K descriptions are received, i.ec £5%), By applying

Using (21) and (22), the spread measurement in (10) can
then be reformulated as

_ 1
(5), D'**) can be expressed as JAEY =Y 1 ZFG - }WT’YG 1 (23)
=0
(K.k) / 2 K-1
D, T — — A, || de. 1
L Az@:\ V(o) z) | Z ” subject toEWTwG == > zlha.
(15) =0
i i igp(Kx . .
Thus, the (m&a’?)) side distortidn(**) can be expressed Using algebra, it can be shown that (23) can be further
interms ofD,; " as simplified to
K 1 K,k . .
DED =y 3 DM 9) JOE =222 =Wz =), @4)
le LK k)

Under the high rate assumption, one can show that the sidevhere
distortion can be approximated as [9]

2 1 1 1
DER o pEK) L - T Z 3 12 1 1
) L\ & iec®e M*=|11 2 . i |eoM, (25
1 oo
[H Ae — = 2}. (17) T |
i 11 ... 1 2



=z zrF ... ZE 7, (26) The result ofProposition4.1 provides a simple expres-
1 sion for the number of points within the firgtshells of a
W=—[wr wT ... wT]". (27) lattice. This enables one to approximate the two terms
K > oB; and Y- jB; using simple expressions [3].
The operator is the Kronecker product [13]. The ma-  After some algebra, one can show that (28) can be ap-
trix before® is the Gram matrix of am i _; lattice [12]. proximated as
The matrixM* is a symmetric matrix with dimensional-
ity (K — 1)L. Equation (24) essentially defines a new lat- ~n/kx%-1

tice Asype With a translations = yG*TW, whereM* = Z J()\|é((z)) |M |(K R . (K -1)L
G*G*T. We refer the new lattice agaplelattice sincek - =0 ) <;(< 11))LL (K—1)L+2
tuples are essentially associated with lattice points. The B 2

Gram matrix ofA e is v2M*. WhenL = 1, the tuple KhTRT N, (29)

matrix Ay reduces td g lattice. The expression in L Nuso .
. . *| Nv\2(K-1)

(24) can be interpreted as the squakedorm of a point where|M”| = K (_vL ) - Itis known thaﬂ}(K*DL
Of Ayupie — 5. The search for gooft -tuples is essentially ~ ¢an be expressed in termsGfSx .- 1), the normalized

reduced to selecting the points .. — s with small ~ Sécond moment of a sphere(ii’ — 1)L dimensions, by
squareds norms. The translation vecteris fully deter- 1

i i int. i Cnr . 30
mined by a scaled sublattice point. By observing (24) and V(K DL G (K =1L 1 2) (30)

(27), one can see that when a component of the coordinate

vectorl is modified by adding a multiple df , the trans- Based on (29) and (30), the distorti@h, takes the form
lated lattice geometryt;, . — s remains the same. There

are K'* different translated lattice geometries. Informally Dy ~ (K-1) Ly (NV)%G(SKL,L)
speaking, this is because the relative arrangement of the 2

scaled sublattice points ant, exhibits periodicity over NTEDE (L4 o(1)). (31)
space.

From (19) and (20), it is seen th&t, and D, are similar.
Thus, a similar analysis can be performed on quaiiity
" resulting in

Upon relatingK -tuples with points of a tuple lattice
Atupre, We are ready to analyze the side distortions (18)
As the points from bott\. and A, x are uniformly dis-
tributed over the space, we can assume that each Voronoi
cell V,,x (As/ k) contains approximately/K* central
lattice points. This holds when the index valies large.
Denote theN/K* K-tuples exploited to label the cen-
tral points within a Voronoi ceIIVS/K( s/i) asAE (i),

i =0,1,...,N/K* — 1, whereA|{ (i) = \; . The
sum of spread measurements of th@gex~ K-tuples
can be parameterized by studying,y... As N is suffi- DK — G(A)22 (M)~ Fe)

ciently large, theV/ K selected points akyypie — s CaAN

be approximated by th&// K~ selected points of;,pie Let N = 2La(E=DE |t follows from (13) thatR. =

in computing the sum of spread measurements. The analy2[1+a(K —1)]. Using (11) and (14) the central distortion
sis can be simplified by only considering the situation that can be rewritten as

NE=Yi)=0,i=0,1,...,N/K" — 1. Denote the theta

series [12] 0\ pic ASOA, . (2) = 7> Y72y B;q’, where DEK) — q(A)22(g—2R0+a(K-1)] — (33)

q = ¢**. The coefficientB; indicates the number of points
in the j-th shell. Thus, we can write

Dy ~ K2(Nv)TG(SL)(1 + o(1)). (32)

The side distortioD%-#) is thus fully specified.

We now study the relationship between rates and dis-
tortions. First, the central distortion can be expressed in
terms ofR. as

Using (11), (31) and (32), the two distortiony andD-
can be expressed in termsBfas

N/KT -1 . 2R -2 2h(f)
> =2y @9 At P2 = KL
i=0 j=0 Rhm D222R(1—a) _ (K . 1)K7ﬁG(SKL_L)22h(f)_

where we assume thaf/ K- = Z o Bj. The parame- _ _
ter  indicates the maximum shell mdex To further sim- Note that the distortiorD, decays slower thai), and

plify (28), we first introduce a widely exploited approxi- D(K’%()' and thus (?Ic;r?)ir_]ates the side distortipn’-").
mation [3] in the following proposition. The final result oD~ is

K—k

Proposition 4.1 Lety’ be the volume of a Voronoi cell of  1im DU R)92R(1~-a) _ K" G(Skp_p)22M0).
an integral latticeA in RY. DenoteV;, as the volume of a R—oo k (34)
sphere of unit radius ilR”. The number of lattice points

. . S s The parametet controls the redundant information be-
S(n) in the flrstn shells of the lattice\ is approximately

tween the K descriptions. We can see that the side dis-
S(n) = V”” (1 + o(1)), wherelim,, . o(1) = 0. tortions DU 1 < x < K are characterized by the



normalized second moment of a spher&ih — L dimen-

sions. Suppose eadh is increased byt /K bit, then the o Central Distortion LoSs
central distortion is decreased By = [l +a(X =1 and the al \A2 — Side Distortion Loss fof = 2 ||
i i i (K.x) py 2- % (1-9) for an 0.1 ol v Side Distortion Loss fol = 3
side distortionD y ) or a ya.E ( ;1) = \° D, == Side Distortion Loss fol = 4
Thus, the product of the decreasing factors is 12t -
g
g-Zl+a(K-1)]g-Z(1-a)(k-1) _ 1 (35) 3
4 )

This shows thak(-channel multiple-description quantizer
is efficient as compared to (1)—(4) for the two channel 067
case. The product of the distortions takes the form of

K
lim

5 10 15 20 25
R—o0 2 Dimension {.)

D(K.i)92RK 02,

= K KG(N)[G(Skp—p)) 122K (36 ,
(MG (Srer-1)] (36) Figure 2. The central and side distortion loss as a function of

Itis seen that, as expected, the parameismot involved the lattice dimensionality.
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5. CONCLUSION

We have studied a general MDLVQ scheme from a geo-
metrical view point. We have found that-tuples used for
index assignment can be associated with points of another
lattice of higher dimensionality than that of the quantiza-

tion space. With the aid the newly obtained geometry, we
showed that the side distortions are characterized by the[ll]
normalized second moment of a sphere in the same di-
mensionality as that of the new lattice. A major result is
that the product of all distortions of the MDLVQ system
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