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ABSTRACT

We consider the rate allocation problem for multiple-description
quantization of the signal described by an adaptive model with a
fixed structure. The source modeling in coding generally results in a
two-stage description of the data, where one of the stages describes
the model parameters, and the other describes the signal. Such a
setup implies the existence of a trade-off between the rate spent
on the parameters and the rate spent on the signal. We optimize
this trade-off analytically for the multiple-description case using a
method inspired by Minimum Description Length principle. We also
provide an algorithm for optimizing the rate allocation between the
components of the model-based multiple description coder. Finally
we experimentally confirm our results. Our method facilitates the
rate-adaptive multiple-description coding.

Index Terms— source modeling, multiple description coding
(MDC), audio coding.

1. INTRODUCTION

We address a problem of finding an optimal rate allocation between
model parameters and multiple descriptions of the signal in the con-
text of model-based multiple description coding (MDC). Previously
the problem of finding the optimal rate allocation was solved for a
single description case [1] and we extend the solution to the multiple
description case. Our reasoning resembles that used in the Minimum
Description Length (MDL) principle [2, 3]. We aim at minimizing
the total average rate required to transmit the signal subject to an
average distortion constraint for model-based multiple-description
vector quantization of the signal. We propose a method optimiz-
ing rate allocation between components of the system that yields the
globally optimal performance.

It is known that direct vector quantization leads to the highest
coding efficiency due to its memory, space-filling and shape advan-
tages [4]. A drawback of vector quantization is that it requires a
large storage memory especially in the case of multiple-description
quantization. The problem becomes particularly severe for adaptive
applications, where the coder should adapt to any rate constraint.
Usage of source modeling provides an alternative that is relevant for
adaptive applications [5].

MDC aims at combating the effect of packet losses by introduc-
ing redundancy and exploiting diversity provided by the network.
Among many multiple-description techniques the quantization-
based methods have proven to perform well [6]. In our work we
focus on minimizing an average rate (entropy) required to achieve
a constrained average distortion. It is known that in the single-
description entropy-constrained case lattice quantizers are optimal
[7]. In the multiple-description case the lattice quantizers are used
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because they simplify the design of an entropy-constrained system.
One of the first multiple-description lattice quantizers was presented
in [8]. In this paper for the purposes of explaining the theory and
implementing the experiments we use the lattice-based MDC of [6].

The usage of statistical models is common in the coding of speech
and audio signals. Such an approach improves the coding efficiency
and facilitates obtaining scalability of the coders with respect to the
bit-rate constraints. A common practice is to use a fixed structure of
the model that is parameterized. Then the signal is quantized assum-
ing a certain signal statistics conditioned on the model parameters.
In practice the models describe short-term statistics of the data. They
are adaptive and their parameters are estimated from the data and
quantized. This implies a two-stage description of the data where
the first stage specifies the model parameters and the second stage
describes the quantized data conditioned on that model. The two-
stage description introduces a trade-off between rate that is spent for
encoding the parameters of the model and rate that is required to en-
code the quantized signal. Contrary to the single-description case,
the multiple description case allows for usage of both single-stage
(describing only the signal or only the model) and two-stage descrip-
tions of the data. The usage of both kinds of descriptions affects the
mentioned rate-allocation trade-off.

The combination of coding based on the usage of the source
models with multiple description coding introduces a non-trivial prob-
lem of embedding the model information into the descriptions of
the signal. Particularly the transmission of the model parameters
should be robust to possible description-losses, since the full infor-
mation about the model is required to perform the successful decod-
ing. An example of a system combining MDC with GMM-based
source modeling may be found in [9]. In this case optimization of
the rate allocation becomes trivial. Our method provides a general
treatment of finding the optimal rate distribution between elements
of the model-based MDC system.

The paper is organized as follows. A presentation of the
multiple-description quantization setup with the usage of a statis-
tical model of the data is described in Section 2. For the considered
setup, an optimal rate-allocation rule is derived in Section 3 and im-
plemented for the case of coding with autoregressive (AR) model.
In Section 4 we present an experimental evaluation of the proposed
solution.

2. MULTIPLE DESCRIPTION QUANTIZATION WITH A
SIGNAL MODEL

We consider encoding of a zero-mean stochastic scalar process Xi.
To facilitate the encoding, the scalar samples are blocked into non-
overlapping L-dimensional vectors yielding XL. Let xL denote a re-
alization of XL. Each realization xL is encoded independently using
knowledge about the pdf of the data fX|Θ(xL|θ), which is parame-

terized by the vector of parameters θ(xL). We consider the entropy-
constrained multiple-description quantization of xL that creates k
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signal descriptions for each xL.
We use a lattice-based multiple-description quantizer that is a

construction consisting of one central lattice Λc and k identical side
lattices ΛS [6]. The side lattices are sublattices of ΛC related ge-
ometrically to ΛC by means of a so-called sublattice index N =
|ΛC/ΛS |. Each central lattice cell has volume v and each side lat-
tice cell has volume Nv. The index N allows for adjusting the re-
dundancy between the descriptions.

There exists a bijective mapping between the central lattice and
the sublattices, which is called an index assignment scheme. The
mapping works as follows. Each xL is first quantized with ΛC . The
quantized value is then mapped to a corresponding codeword in each
of the side codebooks resulting in a k-tuple of codewords. We refer
to elements of the tuple as descriptions. The descriptions are trans-
mitted independently through the network such that the losses of the
descriptions are independent. This requires the existence of diver-
sity within the network, which can be represented as an assumption
about the availability of k independent channels. During the trans-
mission any of the descriptions may be lost. The index assignment
is designed to allow the reconstruction of xL for any subset of re-
ceived descriptions. If all the descriptions are received, the mapping
can be inverted and the correct reconstruction point from ΛC can be
selected. In case of losses xL is reconstructed with lower fidelity by
means of averaging of all received descriptions [6].

The usage of the source modeling implies that θ should be known
at the decoder. The quantized vector of parameters θ can be included
in any of the k descriptions resulting in a two-stage description.
However, the transmission of θ with each signal description may
lead potentially to a large rate overhead, since only the successful
reception of one two-stage description is required to reconstruct the
signal. Note that the multiple description quantization cannot be ap-
plied directly to the vector of model parameters in order to reduce
the overhead because a loss of any model description likely destroys
the mapping that was used during the encoding. We assume that
m out of k descriptions contain full information about θ (see Fig.
1). Transmitting model information as separate descriptions has low
practical relevancy, therefore it is not considered here.
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Fig. 1. Multiple-description coding scenario, k-description case.

Let D(k,i) be the average distortion (MSE) for the case of re-
ceiving i signal descriptions out of k including at least one two-stage
description. Let Dk,m be the weighted distortion for the system us-
ing m two-stage descriptions out of a total number of k descriptions.
It is assumed that the description losses are independent for each
description and that the probability of description loss is p for each
of the descriptions. For the case of m < k and i ≥ k − m + 1,
there are

(
k
i

)
combinations of the descriptions that allow for recon-

structing the xL, for 1 ≤ i ≤ k − m, there are
(

k
i

) − (
k−m

i

)
such

combinations. The remaining combinations of the descriptions make
the decoding impossible due to lack of model information, and the

associated distortion is equal to
EX{‖XL‖2}

L
. Thus, the weighted

distortion (MSE) is given by

Dk,m(v, N) =
k∑

i=k−m+1

(
k

i

)
(1 − p)ipk−iD(k,i)(v, N) + (1)

+

k−m∑
i=1

((
k

i

)
−

(
k − m

i

))
(1 − p)ipk−iD(k,i)(v, N) +

+pm EX{‖XL‖2}
L

.

For the case of k = m the second term of of the eq. (1) vanishes.
D(k,i) can be computed as [6]

D(k,i)(v, N) =

(
G(Λc) +

k − i

2ki
G(SL)φ2

LN
2k

L(k−1)

)
v

2
L , (2)

where G(Λc) and G(SL) are second dimensionless moments of in-
ertia of Λc and an L-dimensional sphere respectively. φL is a so-
called expansion factor [6].

3. OPTIMAL RATE ALLOCATION

In this section we derive the optimal rate allocation between model
and signal. We consider a k-description case with m two-stage de-
scriptions. The probability of description erasure is assumed p for
each description. The rate used to describe the signal is the same for
each description and equal to RS (symmetric MDC). The two-stage
descriptions have an additional RM nats to describe the model infor-
mation. The optimization problem is to find the RM that minimizes
the total rate for arbitrary v and N .

Assuming a high-rate (small central quantization cell volume v
and source pdf approximately uniform within side quantization cell)
for a given vector of parameters θ and sublattice index N , the length
of a codeword required to create a single description of xL is

LX|Θ(xL|θ(xL)) = − log
(
fX|Θ(xL|θ(xL)vN

)
, (3)

and the average rate is RS = EX{LX|Θ(XL|θ(XL))}.
A natural criterion for selecting the vector of model parameters

θ̂ is then
θ̂(xL) = arg max

θ
fX|Θ(xL|θ(xL)), (4)

which minimizes the codeword length required to describe xL.

However, θ̂ cannot be transmitted with a finite rate and it must
be quantized yielding θ̄. Assume high-rate and that Θ = θ(XL)
is distributed according to some probability mass function fΘ(θ).
The codeword length required to describe θ̄(xL) is LΘ̄(θ̄(xL)) =
− log

(
fΘ(θ̄(xL))

)
. The average rate spent on encoding the model

parameters is therefore RM = EX{LΘ̄(θ̄(XL))}.
We finally obtain a coded version of xL that consists of m two-

stage descriptions and k−m single-stage descriptions using the total
rate

L(xL) = mLΘ̄(θ̄(xL)) + kLX|θ̄(x
L|θ̄(xL)). (5)

We are interested in minimizing RT = EX{L(XL)} for constrained
m, k and p, and finally a fixed side cell volume vN . The goal is to
explicitly express the penalty to the total rate resulting from the us-

age of a quantized model θ̄ instead of the optimal θ̂. Thus we write
the total rate as

RT = EX{ψ(θ̂, θ̄, XL)} − kEX{fX|Θ̂(XL|θ̂(XL))} +

−k log(Nv), (6)

2490



where we introduced the so-called index of resolvability

ψ(θ̂, θ̄, xL) = −m log fΘ(θ̄(xL)) − k log
fX|Θ̄(xL|θ̄(xL))

fX|Θ̂(xL|θ̂(xL))
. (7)

We note that for arbitrary N and v the optimal rate for the model

is minimizing the EX{ψ(θ̂, θ̄, XL)}, since the other terms of eq. (6)
do not depend on the quantized model.

3.1. Application to Autoregressive Modeling

Following the derivation in [1] we consider the case when autore-
gressive (AR) modeling is used to model the source. We assume that
XL has a Gaussian multivariate distribution

fX|Θ̄(xL|θ̄(xL)) =
1√

(2π)L det(RΘ)
exp(−1

2
xLT

R−1
Θ xL),

(8)
where RΘ is model covariance matrix for XL corresponding to the
AR model with parameters θ. The result of [1] is that the mean rate
penalty due to the quantization of the model is given by

EX{log
fX|Θ̄(XL|θ̄(XL))

fX|Θ̂(XL|θ̂(XL))
} =

Lα

4
D(Θ̄, Θ̂), (9)

α ≈ 1

L
xLT

R−1
Θ xL. (10)

The mean model distortion D(Θ̄, Θ̂) is the mean log-spectral dis-
tortion. Then the index of resolvability for the MDC case takes the
form

EX{ψ(θ̂, θ̄, XL)} ≈ mRM + k
Lα

4
D(Θ̄, Θ̂). (11)

The model distortion D(Θ̄, Θ̂) can be computed as

D(Θ̄, Θ̂) = Ce−
2
d
(RM−h(Θ̂)), (12)

where C is the coefficient of quantization for the model parameter

quantizer, h(Θ̂) is the differential entropy measured in the log spec-

tral domain and d is the dimensionality of the manifold that Θ̂ lies
on (cf. [1]). Plugging eq. (12) into eq. (11) and differentiating with
respect to RM , we obtain the optimal rate allocation, for given N
and v, which is given by

R∗
M (k, m) = h(Θ̂) +

d

2
log

(
Lα

2d
C

)
+

d

2
log

(
k

m

)
. (13)

The last term of eq. (13) represents a penalty for the case of m < k.
For k = m the last term vanishes and we obtain the result of [1]. We
note that for constant v and N the optimal R∗

M does not depend on
the volume of the side lattice cell, which is true under the high-rate
assumption.

3.2. Constrained weighted distortion case

The optimization problem is to find the RM that minimizes the to-
tal rate RT required to achieve a constrained value of the weighted
distortion Dk,m. We first show that, given a packet loss rate, con-
straining the distortion and minimizing the last term in eq. (6) results
in v and N that are constant. Thus, the optimal rate for the model can
be obtained by minimizing the mean index of resolvability. Specifi-
cally, for the AR modeling the optimal rate for the model is given by
eq. (13).

Constraining the weighted distortion Dk,m, we can compute v
for arbitrary N using eq. (1) and eq. (2) obtaining

v(Dk,m, N) =

(
Dk,m − pm

EX‖XL‖2/L

K1G(Λc) + K2G(SL)φ2
LN

2k
L(k−1)

) L
2

, (14)

where

K1(k, m) =

k∑
i=k−m+1

(
k

i

)
(1 − p)ipk−i + (15)

+

k−m∑
i=1

((
k

i

)
−

(
k − m

i

))
(1 − p)ipk−i,

K2(k, m) =

k∑
i=k−m+1

(
k

i

)
(1 − p)ipk−i k − i

2ki
+ (16)

+

k−m∑
i=1

((
k

i

)
−

(
k − m

i

))
(1 − p)ipk−i k − i

2ki
.

We define a side lattice cell volume τ(N) = Nv(Dk,m, N).
Minimizing the total rate (eq. (6)) with respect to N is the same
as maximizing the volume τ(N). By using the expression for the
weighted total distortion (eq. (1)) and eq. (2), we can derive the op-
timal Nopt = arg maxN τ(N) for given weighted distortion. After
some algebra we find that

Nopt(k, m) =

(
(k − 1)

K1(k, m)G(Λc)

K2(k, m)G(SL)φ2
L

) L(k−1)
2k

. (17)

We note from eq. (17) that the optimal N is constant for a fixed
k, m and p. Moreover for a fixed distortion Dk,m and N the opti-
mal v(Dk,m, N) is constant and the minimization of the model rate
can be still done within the mean index of resolvability. Our result
shows that the optimal redundancy introduced by MDC is indepen-
dent from the model rate R∗

M .

3.3. Optimal construction of the descriptions

Given a packet loss rate p, and a mean weighted distortion Dk,m we
minimize the rate RT by finding the optimal k and m and optimizing
a rate-allocation between the components of the system.

The following steps lead to the solution. For each possible com-
bination of k and m we find the optimal N according to eq. (17).
We note that the set of possible combinations is usually small due to
the fact that a highest applicable k is low in practise. For each k and

m we find the model rate that minimizes EX{ψ(θ̂, θ̄, XL, m, k)}.
We finally select a combination of k and m that minimizes

RT (k, m) = EX{ψ(θ̂, θ̄, XL, m, k)} +

−kEX{fX|Θ̂(XL|θ̂(XL))} + (18)

−k log(Nopt(m, k)v(Dm,k, Nopt(m, k))),

subject to Dm,k = D. Specifically, for the case of AR modeling the
optimal k and m should minimize the following cost function

η(k, m) = mR∗
M (k, m) − kEX{fX|Θ̄(XL|θ̄(XL))} +

−k log(Nopt(m, k)v(Dm,k, Nopt(m, k))), (19)

subject to Dm,k = D.
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4. EXPERIMENT
The experimental verification of our results was performed for the
case of speech coding based on tenth-order AR modeling. Our ex-
periment uses similar methodology as the experiment described in
[1].

10000 speech blocks with 20ms length were extracted from the
TIMIT database [10] and resampled to 8 kHz. A tenth-order AR
model was estimated for each of the blocks resulting in a vector of
linear prediction coefficients (LPC) that was first converted to the
line spectral frequency (LSF) domain and scalar-quantized spending
RM bits. A diagonal sensitivity matrix was derived for each vec-
tor of coefficients and used during the quantization. Each block was
divided into four non-overlapping subblocks. A subblock in the mid-
dle of the block was selected and normalized to obtain α = 1. The
KLT transform was computed using the quantized model and applied
to the subblock obtaining a vector of transform coefficients.

Each vector of coefficients was then quantized using a scalar
(central) quantizer and for each vector a necessary rate was estimated
to obtain a certain SNR for the case of k-description quantization
with m two-stage descriptions. The probability of description era-
sure was assumed to be p = 0.01 and for each considered configu-
ration of the MDC an optimal value of N was computed to optimize
the weighted distortion computed from eq. (1). The rate necessary
for transmitting each of the descriptions has been estimated accord-
ing to [6] and multiplied times 4 to obtain the rate for the whole
block.

We estimated the differential entropy and the dimensionality of

the manifold that Θ̂ lies on using the method of [11]. The dimension-
ality of the manifold was d = 7.1 and the differential entropy for the
scalar quantization was 19.35 bits. We made the experiments for the
cases of k = m = 1 with no losses in the channel, k = 2, m = 2
and k = 3, m = 2 for the case of lossy channel (p = 0.01). The aim
of the experiment was to check if the optimal model rate computed
according to eq. (13) indeed minimizes RT . In the experiment we
measure an excess rate over the lowest total rate that yields a cer-
tain value of SNR in a function of model rate. Our results confirm
the theory that the optimal rate for the model is constant for high
SNR. According to the theory, the optimal model rate for the cases
of k = m = 1 and k = m = 2 is 19 bits per block and for the case
k = 3, m = 2 is 21.1 bits per block.

Additionally we empirically observed the model rate-penalty for
the case k > m related to the last term of the eq. (13), which is 2.1
bits between the cases of k = m and k = 3, m = 2.

5. CONCLUSIONS

We conclude that the rate allocation between components of the
model-based lattice multiple description coder can be optimized an-
alytically. The optimization is done subject to a distortion constraint
and for a given packet loss rate. The considered setup allows for per-
forming the optimization for a combination of two-stage and single
stage descriptions. Our analysis of the rate-allocation problem shows
that the optimal redundancy introduced by MDC does not depend on
the model rate. We show that under the high rate condition the opti-
mal rate for the model does not depend on the distortion constraint.
Finally we provide a method to optimize the number of two-stage
and single-stage descriptions.

We apply our theory to the case of AR modeling. By means
of experiment we confirm that for a high rate and a fixed number
of two-stage and single-stage descriptions the optimal rate for the
model does not depend on the distortion constraint.

Our other experimental results indicate that using an optimized
number of two-stage descriptions generally performs better than us-
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ing both two-stage and single-stage descriptions. It remains to be
shown if this result is universal.
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