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Abstract
Iterative source-channel decoding (ISCD) exploits the
residual redundancy of source codec parameters by us-
ing the Turbo principle. However, ISCD might require
more computational complexity than available as the uti-
lized soft decision source decoder (SDSD) can be com-
putationally quite expensive. In this paper we propose a
reduced-search SDSD, based on the M-algorithm known
from channel decoding, which considerably reduces the
complexity of the receiver. Furthermore, we show that
by slightly modifying the quantization at the transmitter,
the complexity can be further reduced without noticeable
performance losses. Complexity figures are given for all
approaches as well as a simulation example showing the
performance of the complexity-reduced SDSD in an ISCD
framework.

1 Introduction
With the discovery of Turbo codes, channel coding close
to the Shannon limit has become possible with moderate
computational complexity. In the past years, the Turbo
principle of exchanging extrinsic information between sep-
arate channel decoders has also been extended to other re-
ceiver components. In a Turbo-like process the residual
redundancy of source codec parameters such as scale fac-
tors or predictor coefficients for speech, audio, and video
signals can be exploited by iterative source-channel decod-
ing (ISCD) [1, 2]. This residual redundancy occurs due to
imperfect source encoding resulting for instance from de-
lay and complexity constraints. It can be utilized by a soft
decision source decoder (SDSD) [3] which exchanges ex-
trinsic reliabilities with a channel decoder.

The execution of the SDSD, however, can be compu-
tationally quite demanding, especially if large quantizer
codebooks are employed. In non-iterative transmission
systems, it is possible to execute the SDSD only for the
most significant bits, as proposed in [4]. However, if such a
source decoder is utilized in an ISCD transmission scheme,
the source decoder can only generate extrinsic information
for the most significant bits, leading to a sub-optimal sys-
tem performance.

In order to reduce the complexity, we have proposed
in [5] a transmitter modification called conditional quan-
tization which allows to considerably reduce the number
of operations carried out at the soft decision source de-
coder. However, the proposed modification also affects the
quality of the reconstructed signal. Therefore, in this pa-
per we propose a receiver-only approach called M-SDSD.
This approach is similar to the well-known M-algorithm
[6], [7], known from channel decoding. A similar approach
has also been introduced in [8]. We show that the number
of operations can be considerably reduced by only slightly
affecting the overall system performance. Furthermore, by
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combining the proposed source decoders with the condi-
tional quantization approach presented in [5], we show that
the complexity can even further be reduced.

2 System Model
In the following, we will briefly review the iterative
source-channel decoding (ISCD) system. In Fig. 1 the
baseband model of ISCD is depicted. At time instant
t a source encoder generates a frame ut = (u1, . . .uKS

)
of KS unquantized source codec parameters uκ , with
κ ∈ {1, . . . ,KS} denoting the position in the frame. Each
value uκ is individually mapped to a quantizer repro-

duction level ūκ , with ūκ ∈ U = {ū(1), . . . , ū(Q)}. The
set U denotes the quantizer codebook with a total num-
ber of |U| = Q codebook entries. A unique bit pattern

xκ ∈ X = {x(1), . . . ,x(Q)} of w∗ bits (i.e., X ⊂ {0;1}w∗
),

with w∗ ≥ ⌈log2 Q⌉
.
= w, is assigned to each quantizer

level ūκ according to the index assignment Γ(ū(i)) = x
(i).

The single bits of a bit pattern xκ are indicated by xκ(m),
m ∈ {1, . . . ,w∗}. If M∗ > log2 Q, the index assignment Γ is
called redundant index assignment [9] and can be consid-
ered to be the composite function Γ(ū) = ΓR(ΓNB(ū)). The
function ΓNB performs a natural binary index assignment,
i.e., the binary representation of the codebook index of ū
is assigned to ΓNB(ū). The function ΓR can be regarded
as being a (potentially non-linear) block code of rate

rIA = w/w∗. After the index assignment, KS bit patterns
are grouped to a frame of bit patterns x = (x1, . . . ,xKS

)
consisting of KS ·w

∗ bits. The frame x of bits is then re-
arranged by a bit interleaver π in a deterministic, pseudo-
random like manner. The interleaved frame with KS ·w∗

bits is denoted as x̆.
For channel encoding of a frame x̆, we use a convo-

lutional code of constraint length J + 1 and of rate rC. In
general, any channel code can be used as long as the re-
spective decoder is able to provide the required extrinsic
reliabilities. In this paper, we restrict ourselves to rate

rC = 1, recursive, non-systematic convolutional codes as
it has been shown [10] that the inner code of a serially
concatenated system should be recursive in order to be
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Figure 1: Baseband model of the utilized ISCD system
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capacity achieving. For the termination of the code, J
tail bits are appended to x̆. The encoded frame of length
KS ·w

∗ + J is denoted by y. The bits yk of y are indexed

by k ∈ {1, . . . ,KS ·w
∗ + J}. Prior to transmission over the

channel, the encoded bits yk are mapped to bipolar bits ÿk

forming a sequence ÿ ∈ {±1}KS·w
∗+J .

On the channel, the modulation symbols ÿk (with sym-
bol energy Es = 1) are subject to additive white Gaussian
noise (AWGN) with known variance σ2

n = N0/2. The re-
ceived symbols zk are transformed to L-values [11] prior
to being evaluated in a Turbo process which exchanges
extrinsic reliabilities between channel decoder (CD) and
soft decision source decoder (SDSD). The channel decoder
used in this paper is based on the LogMAP algorithm [12],
[11]. For the derivations of the equations for computing
the extrinsic probabilities of the SDSD, we refer the reader
to the literature, e.g., [2], [3], [13]. In Section 3, we will
briefly revise the SDSD equations and give expressions in
the logarithmic domain in order to evaluate the complexity
and the complexity savings of the proposed algorithms.

3 Soft Decision Source Decoding
The SDSD may be interpreted as a modification of the
well-known BCJR algorithm [12], operating on a fully de-
veloped trellis diagram. For the derivation of the SDSD
equations, we refer to the literature, e.g., [1], [2], [13].
The SDSD utilizes the remaining residual redundancy af-
ter source coding in the signal. In this paper, we assume
that this residual redundancy is modelled as a Markov pro-
cess of first order. The residual redundancy which we con-
sider in this paper is so-called inter-frame redundancy, i.e.,
the parameters in one block are statistically independent
but are correlated between (“inter-”) different blocks, i.e.,
P(ūκ ,t |ūκ−1,t) = P(ūκ ,t) but P(ūκ ,t |ūκ ,t−1) 6= P(ūκ ,t).

In the following, we briefly revise the equations for
SDSD as they are needed to estimate the complexity of
the algorithm. We give the equations in the logarithmic
domain, as an implementation in the logarithmic domains
offers several advantages, such as, e.g., better numerical
stability [5].

The input to the soft decision source decoder (SDSD)
are the (deinterleaved) extrinsic L-values generated by the
channel decoder

L
[input]
SDSD(xκ ,t(m)) = L

[ext]
CD (xκ ,t(m))

= ln

(

P
[ext]
CD (xκ ,t(m)=0)

P
[ext]
CD (xκ ,t(m)=1)

)

. (1)

The first step of the SDSD consists in determining the log-

arithmic input reliabilities θ̃(x
( j)
κ ,t) for each distinct bit pat-

tern x
( j)
κ ,t ( j = 1, . . . ,Q) for parameter position κ at time

instant t with

θ̃(x
( j)
κ ,t) =

w∗

∑
m=1

ẍ
( j)
κ ,t(m)

2
L

[input]
SDSD(xκ ,t(m)) (2)

and ẍ
( j)
κ ,t(m) denoting the bipolar representation of x

( j)
κ ,t(m),

with ẍ
( j)
κ ,t(m) = 1−2 · x

( j)
κ ,t(m).

After determination of the reliabilities θ̃(x
( j)
κ ,t), the

source decoder can compute the forward recursion

α̃(x
( j)
κ ,t) = θ̃(x

( j)
κ ,t)+max*

i=1...Q

(

α̃(x
(i)
κ ,t−1)+P̃(x

( j)
κ ,t |x

(i)
κ ,t−1)

)

(3)

with the initialization α̃(x
(ℓ)
κ ,0) = P̃(x

(ℓ)
κ ) and

max*(δ1,δ2) = max(δ1,δ2) + ln(1 + e−|δ1−δ2|). The

factors P̃(x
(ℓ)
κ )

.
= lnP(x

(ℓ)
κ ) and P̃(x

( j)
κ ,t |x

(i)
κ ,t−1

.
=

lnP(x
( j)
κ ,t |x

(i)
κ ,t−1) denote the logarithmic a priori prob-

abilities. They can be computed offline and stored in
the decoder memory. As only inter-frame redundancy is
exploited, the decoder can only execute a single forward
recursion if no further delay is allowed. If several blocks
are stored at the receiver, an additional backward recursion
can be carried out, leading to a slightly better decoding
result. However, we do not consider this case here. For the
equations of the backward recursion, see, e.g., [5].

Using the result of the forward recursion, the extrinsic
information finally is calculated by

L
[ext]
SDSD(xκ ,t(m))=max*

j=1...Q

x
( j)
κ ,t (m)=0

(

α̃(x
( j)
κ ,t)−

1

2
L

[input]
SDSD(xκ ,t(m))

)

−max*

j=1...Q

x
( j)
κ ,t (m)=1

(

α̃(x
( j)
κ ,t)+

1

2
L

[input]
SDSD(xκ ,t(m))

)

. (4)

3.1 Complexity of SDSD
The evaluation of (2) requires Q ·w∗ additions per param-

eter as the θ̃(x
( j)
κ ,t) have to be determined for each possible

bit pattern x
( j)
κ ,t ∈ X. The factors 1

2
L

[input]
SDSD(xκ ,t(m)) can be

calculated and stored (as they are needed a second time in
the run-time of the algorithm) using w∗ multiplications by

a constant per parameter. As the multiplication by 1
2

can be
efficiently realized in hardware, we do not take into con-
sideration this multiplication in the complexity evaluation.

The multiplication by ẍ
( j)
κ ,t(m) corresponds to a sign change

only as ẍ
( j)
κ ,t(m) ∈ {±1}. The evaluation of (3) requires Q2

max* operations as well as Q + Q2 additions per parame-
ter. Finally, the evaluation of (4) requires w∗Q max* op-
erations as well as w∗(Q + 1) additions. Therefore, a to-

tal number of Q2 + Q(2w∗ + 1)+ w∗ additions as well as

Q2 + w∗Q max* operations are required for carrying out
the full-complexity SDSD.

4 Reduced Search Soft Decision

Source Decoding

4.1 M-SDSD
In channel decoding of convolutional codes, the M-
algorithm [7] can be successfully applied in order to reduce
the complexity of the decoder. Another successful field of
application is channel equalization of ISI-channels [6].

The SDSD in fact is a variant of the BCJR algorithm
[12] operating on a fully developed trellis [13]. Each state
corresponds to a quantizer reproduction level (or a bit pat-
tern, respectively). The state transitions correspond to the

possible transitions x
(i)
κ ,t−1 → x

( j)
κ ,t . At each trellis transi-

tion the M-SDSD determines the M states with the highest
probability and only considers these states for computing
the state transitions.

Equation (3) is performed for all states x
( j)
κ ,t but only the

M (saved) best states from the previous time instant t − 1
are considered. Therefore, the complexity of (3) reduces
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to Q + MQ (with M < Q) additions and MQ max* opera-
tions. After execution of the complexity-reduced version
of (3), the M best states have to be determined, i.e., the

α̃(x
( j)
κ ,t) with the largest value. This can be done using a

simple search with MQ−∑M
n=1 n = MQ− 1

2
(M2 +M) com-

pare operations (states that have already been chosen don’t
need to be compared anymore). For determining the ex-
trinsic information, only the M best α̃(xκ ,t) are utilized,
and therefore the complexity of (4) reduces to w∗(M + 1)
additions and w∗M max* operations.

4.2 M-SDSD with Conditional Quantization
A further complexity reduction of the source decoder can
be achieved if the transmitter can be modified. In this case,
the conventional scalar quantizer can be replaced by a so-
called conditional quantizer (CQ). The conditional quan-
tizer has been introduced in [5] and corresponds to a quan-
tizer with memory: depending on the previously quantized

sample ū
(i)
κ ,t−1 a reduced codebook is utilized which con-

siders only the entries which have a transition probability

P(ū
( j)
κ ,t |ū

(i)
κ ,t−1) > T , with T being the probability thresh-

old of the quantizer. Depending on T , the number of tran-
sitions in the trellis diagram is considerably reduced and
thus also the number of operations. A drawback of condi-
tional quantization is however the reduced reconstruction
quality in error-free channel conditions. For details, we re-
fer the reader to [5]. Note that if a CQ is employed at the
transmitter, (3) has to be modified: the residual source re-

dundancy P̃(x
( j)
κ ,t |x

(i)
κ ,t−1) has to be replaced by a modified

probability P̃red(x
( j)
κ ,t |x

(i)
κ ,t−1) as the source redundancy is

modified by the conditional quantizer. For details, see [5].
The complexity of the M-SDSD is more difficult to

determine as the number of transitions per state varies.
Therefore, only a tight upper bound for the complexity can
be given which however is needed for a hardware realiza-
tion guaranteeing a certain throughput. The conditional
quantizer uses a reduced codebook

Ured,i =
{

ū
( j)
κ ,t : P

(

ū
( j)
κ ,t |ū

(i)
κ ,t−1

)

> T ,∀ ū
( j)
κ ,t ∈ U

}

. (5)

depending on the previously quantized sample. The num-
ber of entries of |Ured,i| varies for different values of i. Let
SM denote the sum of the number of transitions of those
M states (i.e., quantizer reproduction levels) having the
largest number of entries |Ured,i|. This is a worst case for
the number of transitions in the SDSD: the M states have
been selected which lead to the highest number of transi-
tions that have to be calculated by the SDSD.

Figure 2 shows an example of the reduction of
states and state transitions in the SDSD trellis diagram.
Figure 2-a) shows the fully developed trellis for Q = 16
quantization levels. In Fig. 2-b) the number of of states is
reduced by the M-SDSD with M = 6. However, the num-
ber of state transitions (Q = 16) per state is unchanged.
This number can be reduced by applying conditional quan-
tization leading to the trellis in Fig. 2-c). Note that Fig. 2-b)
and Fig. 2-c) only show snapshots. The M selected states
may vary for each trellis transition.

In the worst case, the complexity of (3) now reduces
to Q + SM additions and SM max* operations. The com-
plexity for determining the M best states remains the same
as in the case of the M-SDSD. Finally, the complexity of
evaluating (4) by the conditional quantizer is not affected,

a) b) c)
Figure 2: Trellis diagrams exploited at the source decoder
in (3) for Q = 16.
a) full trellis diagram
b) exemplarily trellis exploited at one stage of the M-
algorithm with M = 6
c) if additionally conditional quantization is exploited with
T = 10−2

therefore w∗(M + 1) additions and w∗M max* operations
are required.

The total number of operations for the three different
algorithms (standard SDSD, M-SDSD and M-SDSD with
conditional quantization (CQ-M-SDSD) are summarized
in Table 1.

5 Simulation Example
The capabilities of the complexity-reduced ISCD system
are demonstrated by a simulation example. The param-
eter signal-to-noise ratio (SNR) between the originally
generated parameters u and the estimated parameters û is
used for quality evaluation. The parameter SNR is plotted
for different values of Es/N0. The source is realized by
KS independent Gauss-Markov (autoregressive) processes
with correlation coefficient ρ fixed to ρ = 0.9. This auto-
correlation value can be observed in typical speech and
audio codecs, e.g., for the scale factors in CELP codecs
or MP3. The quantization is performed using a Q = 16
level Lloyd-Max codebook U. The utilized block coded
index assignment ΓR is a repetition code [14] (w∗ = 8).

The utilized channel code is a rate rC = 1 recursive non-
systematic convolutional code of constraint length J = 4

with generator polynomial GC(D) =
(

1
1+D+D2+D3

)

. The

non-iterative reference scheme as well as the hard-output
channel decoding reference uses optimized components
for non-iterative systems, i.e., a natural binary index as-

signment with w∗ = log2⌈Q⌉ = 4 and a rate rC = 1
2

recur-
sive, systematic convolutional code of constraint length

J = 4 with GC(D) =
(

1, 1+D2+D3

1+D+D3

)

.

We assume that the source exhibits inter-frame corre-
lation, i.e., all the single elements uκ of ut are statistically
independent from each other. The different samples uκ are
correlated with their counterpart from previous frames. A
frame consists of KS = 250 parameters. In order not to
introduce any additional delay, the forward-only SDSD as
introduced in Sec. 3 is employed.

The simulation results are depicted in Fig. 3. At the
receiver 15 iterations have been carried out in a first exper-
iment. It can be seen that the utilization of the M-SDSD
with M = 6 does not cause any noteworthy performance
losses for good channel conditions (Es/N0 > −4 dB). The
application of conditional quantization further reduces the
complexity at the expense of a slightly decreased param-
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Table 1: Operations per parameters needed by the different complexity-reduced SDSD variations

ADD max* CMP

Standard Q2 +(2w∗ +1)Q+w∗ Q2 +w∗Q

M-SDSD (w∗ +M +1)Q+w∗(M +1) M(Q+w∗) MQ− 1
2
(M2 +M)

CQ-M-SDSD (upper bound) (w∗ +1)Q+SM +w∗(M +1) SM +w∗M MQ− 1
2
(M2 +M)

eter SNR in good channel conditions [5]. The fact that
the CQ has a better performance in the waterfall region
is explained in [5]. With T = 10−2 and M = 6, the fac-
tor SM can be determined to SM = 50, by considering the
6 codebooks Ured,i with the highest number of entries.
The complexity per parameter of the three different uti-
lized SDSD algorithms with the configuration of the sim-
ulation example are summarized in the following table:

ADD max* CMP

Standard 536 384
M-SDSD 296 144 75

CQ-M-SDSD (upper bound) 218 98 75

With w∗ = 8 and rC = 1, the LogMAP decoder [11],
[15] requires approximately 656 additions and 256 max*

operations per parameter. If we assume in a first ap-
proximation that all three operations (additions, max*, and
compares) require the same amount of computing power
in a hardware realization, the total number of operations
amounts to 19545 per parameter if 15 iterations are uti-
lized and the M-SDSD with conditional quantization (T =
10−2) is utilized. If the full SDSD is employed, only 10
iterations can be carried out if the above number of op-
erations (19545) per parameter shall be fixed as an upper
bound. The simulation result for 10 iterations is also given
in Fig. 3. It can be seen that it is advantageous to utilize
a complexity-reduced source decoder and a higher number
of iterations if the total number of operations to be per-
formed is limited.

6 Conclusion
In this paper, we have applied the M-algorithm known
from channel decoding and channel equalization to the
soft decision source decoder (SDSD) utilized in an iter-
ative source-channel decoding. We have shown that the
complexity can be considerably reduced by selecting the
best states and only considering those in the computations.
Furthermore, if the transmitter can be modified, a further
complexity reduction can be achieved by employing con-
ditional quantization. We have shown that the reduced-
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Figure 3: Parameter SNR performance for different
reduced-search source decoders (M = 6, T = 10−2)

search source decoders show no noteworthy performance
losses in the most interesting range of channel conditions
by using less than half the number of operations of the
standard SDSD. Furthermore, in a simulation example it
has been shown that, if the number of available operations
is fixed, it can be advantageous to employ reduced-search
decoders and a higher number of iterations than the stan-
dard SDSD with a lower number of iterations.
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