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Abstract— In our contribution we analyze the EXIT char-
acteristics of feed forward convolutional codes employed in a
parallel concatenated Turbo scheme or as inner component in
a serially concatenated scheme. It turns out that the EXIT
characteristics reveal some general limitations. First we give an
illustrative reason for the limited capabilities of feed forward
and non-terminated recursive convolutional codes and secondly,
we provide novel analytical means to determine the maximum
mutual information available at the extrinsic output of feed
forward convolutional decoders. This upper bound for the mutual
information is only dependent on the channel quality and on the
Hamming weight of the impulse response of the convolutional
code. The paper concludes by determining the maximum mutual

information for a wide range of channel conditions and code
parameters, showing for which codes and channel conditions a
maximum mutual information of ≈ 1 bit can be reached.

I. INTRODUCTION

With the discovery of Turbo codes [1], [2], [3] chan-

nel coding close to the Shannon limit becomes possible

with moderate computational complexity. The convergence of

Turbo processes can be analyzed using EXIT charts [4], [5].

EXIT charts visualize the exchange of extrinsic information

between the constituent decoders in a concatenated system.

Each decoder is represented by an EXIT characteristic, which

describes the extrinsic information transfer (EXIT) from the

a priori input to the extrinsic output of the decoder. In the

original papers [4], [5], S. ten Brink proposed to determine

EXIT characteristics by histogram measurements. The a priori

input is modelled by a Gaussian process with a specific mean

and variance, and the resulting extrinsic output values are

recorded in histograms. From the histograms for different

Gaussian inputs it is straightforward to compute the EXIT

characteristics [5]. The original EXIT chart papers mainly

considered recursive convolutional codes.

On the other hand, feed forward convolutional codes have

been used in a variety of existing communication systems,

e.g., GSM and UMTS. However, due to their suboptimal

performance when used in iterative decoders [3], not much

analysis has been performed for Turbo-like systems employing

feed forward convolutional codes as inner channel codes.

However, it can be beneficial to perform iterative decoding also

in existing systems. For instance, the application of iterative

source-channel decoding might be advantageous in speech

transmission systems like GSM and UMTS [6], [7], [8]. To

analyze such systems, EXIT charts can be a powerful tool.

In this paper we analyze the EXIT charts of feed forward

convolutional codes, especially the property that no perfect

extrinsic information can be generated even if perfect a

priori knowledge is available. The mutual information of the

extrinsic output is upper bounded, depending on the code and

the channel quality. First, we give an easy explanation of this

behavior using the Trellis diagram of the convolutional code

and secondly, we show by analytical means that the maximum

attainable mutual information only depends on the channel

quality and the Hamming weight of the impulse response of

the code. We also give an expression to calculate this mutual

information.

The paper is organized as follows. Section II introduces

the EXIT characteristics of feed forward convolutional codes

and shows in a simulation example the property that the

mutual information is upper bounded. Section III-A gives

an explanation on this behavior and in the Section III-B,

an analytical expression for the maximum attainable mutual

information is derived. Finally, Section IV shows that this

analytical expression matches the observations of Section II.

II. EXIT CHARTS OF FEED FORWARD

CONVOLUTIONAL CODES

Introduced in [4], EXIT charts have become an important

tool for the convergence analysis of concatenated systems with

iterative evaluation of extrinsic information at the receiver.

EXIT characteristics plot the mutual information IE of the

extrinsic output of a decoder as a function of the mutual

information IA of the a priori input.

To clarify notations, Fig. 1 shows the block diagram of

an EXIT chart measurement circuit [9] for a feed forward

convolutional code employed in a parallel concatenated (PC)

iterative decoding scheme or as inner component in a seri-

ally concatenated (SC) iterative decoding scheme. A binary

source S generates a vector u of binary data bits. The

vector u is encoded to a vector x using a convolutional

encoder. After transmission over a communication channel

the MAP SISO decoder [10] receives a possibly noisy vec-

tor y. Here, the communication channel consists of BPSK

modulation with symbol energy Es = 1, AWGN with noise
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Fig. 1. Block diagram showing the measurement of the EXIT chart of a
MAP SISO convolutional decoder [9]

variance σ2
n = N0/2, BPSK demodulation, and conversion to

L-values [2]. The MAP SISO decoder receives additional

a priori information on the data bits u from the extrinsic

output of the (notional) second constituent decoder of the

iterative decoding scheme. This information is modelled by

the extrinsic channel which adds Gaussian noise with defined

mean and variance [5], [9] to the bipolar representation of

those bits. Note that the inputs and the outputs of the MAP

SISO decoder are represented as L-values. The MAP SISO

decoder outputs extrinsic information on the data bits L[ext](û)
and extrinsic information on the encoded bits L[ext](x̂). In our

case, the mutual information of interest to compute the EXIT

charts is the a priori mutual information IA = I(U ; L
[apr]

Û
) and

the extrinsic mutual information IE = I(U ; L
[ext]

Û
). Note that u

is a realization of the random process U and accordingly,

L[ext](û) and L[apr](û) are realizations of the corresponding

random processes L
[ext]

Û
and L

[apr]

Û
.
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Fig. 2. EXIT characteristics of different feed forward convolutional codes
for Es/N0 = 1/(2σ2

n) = −5 dB

Figure 2 shows the EXIT characteristics of different rate 1/2
and rate 1/3 feed forward convolutional codes acting in a

parallel concatenated system or as inner code in a serially

concatenated system, i.e., the input to the decoder consists

of the a priori knowledge on the data bits and of the

received channel values of the encoded bits; the decoder

generates extrinsic information L[ext](û) for the data bits u.

As visible in Fig. 2, the characteristics do not reach the point

(IA = 1 bit , IE = 1 bit) which is needed for perfect decoding.

Table I lists the maximum mutual information for perfect a

TABLE I

MEASURED MAXIMUM MUTUAL INFORMATION FOR THE CODES IN FIG. 2

AND Es/N0 = 1/(2σ2
n) = −5 DB

Generator polynomials IE

˛

˛

˛

˛

IA=1

(3, 2)8 0.7038

(7, 5)8 0.8595

(17, 15)8 0.9316

(17, 15, 13)8 0.9764

(23, 35)8 0.9324

(53, 75)8 0.9665

(133, 171)8 0.9762

priori knowledge (i.e., IA = 1 bit) for the codes of Fig. 2.

An easy to understand explanation of this behavior and an

expression to analytically compute the mutual information IE

for IA = 1 bit is given in Section III.

III. MAXIMUM ATTAINABLE MUTUAL INFORMATION

It has already been observed in [11] that the EXIT char-

acteristics of feed forward convolutional codes do not reach

IE = 1 bit for IA = 1 bit. The explanation given is based on

the fact that the coupling of the bits is limited by the constraint

length of the code. We give a more detailed explanation of this

behavior using the Trellis representation of the convolutional

code. In Section III-B, we consider the problem theoretically

and provide an analytical solution for the maximum attainable

mutual information.

A. Illustrative Explanation

The behavior of imperfect mutual information if perfect a

priori knowledge is available can best be visualized using

the Trellis representation of the convolutional code. Figure 3

depicts parts of the Trellis diagram of a memory J = 2 feed

forward convolutional code. Without loss of generality (due

of the linearity of the code), it can be assumed that the all-

zero path has been encoded and transmitted. Determining

the extrinsic information for ûk at time instant k means

determining the probability that the estimated data bit ûk at

time instant k is either 0 or 1 if a priori information on the

data bits uk is available at all time instants except for k. If

we take a look at Fig. 3, we see immediately that, if it is

perfectly known that the all-zero data sequence has been sent

(IA = 1 bit), the decision at instant k cannot be determined by

purely considering the a priori knowledge at all time instants

except k. However, in order to compute the extrinsic output at

k − 1 k k + 1 k + 2 k + 3
00

01

10

11
uk = 0
uk = 1

Decision

?

Fig. 3. Extrinsic Decision if perfect a priori knowledge is available in the
case of a memory J = 2 feed forward convolutional code
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Fig. 4. Extrinsic Decision if perfect a priori knowledge is available in the
case of a memory J = 2 recursive convolutional code

instant k, the decision on û has to be made using the channel

output only. This decision is not influenced by the a priori

knowledge as the (perfectly known) inputs at instants k + 1,

k + 2, etc. lead to the same inner state of the convolutional

encoder after J inputs (due to the non-recursive structure of

the code).

In the case of recursive convolutional codes, however, a

different data input uk at time instant k and identical, perfectly

known inputs at subsequent instants do not lead to the same

state after J inputs, resulting from the recursiveness of the

encoder as shown in Fig. 4. A different decision at instant k,

followed by perfectly known data bits leads to a different

Trellis path which does not end in the same state. Thus, if

the encoder is terminated (i.e., the encoding stops in a defined

state) and the input vector u is of finite length, perfect a

priori knowledge leads to a non-ambiguous decision on the

extrinsic output at instant k. If the recursive code is not

terminated, similar effects as in the case of feed forward

codes are observed, i.e., no perfect extrinsic information can

be generated even if perfect a priori knowledge is available.

Nevertheless, the remainder of this paper will only focus on

feed forward convolutional codes.

B. Theoretical Results

Definition 3.1: Let C be a rate R = 1/N feed forward

convolutional encoder with time-domain generator matrix G.

Let u(1) = (1, 0, . . . , 0) be a weight one input vector of

length J + 1. The vector u(1) is encoded by C to the code

vector x(1) = u(1)G =
(

x
(1)
1 , x

(1)
2 , . . .

)

with x
(1)
k ∈ {0; 1}.

The vector x(1) is also denoted as the impulse response of

the convolutional code. The Hamming weight of the impulse

response vector x(1) is defined as D̄C and it holds

D̄C =

N(J+1)
∑

k=0

x
(1)
k . (1)

Theorem 3.2: Given a rate R = 1/N feed forward convolu-

tional code C with memory J and transmission over an AWGN

channel with noise variance σ2
n, the L-values of the extrinsic

MAP SISO decoder output L[ext](û) show a Gaussian distri-

bution with mean µE = 2 D̄C

σ2
n

and variance σ2
E = 2µE = 4 D̄C

σ2
n

if perfect a priori knowledge on the equiprobable data bits u

is available (i.e., IA = 1 bit).

Proof: (This proof uses intermediate results from [12])

Let u(0) = (u
(0)
1 , . . . , u

(0)
J+1) = (0, . . . , 0) be the all zero vec-

tor and u(1) = (u
(1)
1 , u

(1)
2 . . . , u

(1)
J+1) = (1, 0, . . . , 0) a weight

one input vector. The length of the input vectors can be

restricted to J + 1, as after J identical inputs, the feed forward

convolutional encoder will have the same inner state. Let G

be the time domain generator matrix of the feed forward

convolutional code C. Encoding both vectors u(0) and u(1)

with C produces the outputs

x(0) = u(0)G =
(

x
(0)
1 , . . . , x

(0)
N(J+1)

)

= (0, 0, . . . , 0)

x(1) = u(1)G =
(

x
(1)
1 , . . . , x

(1)
N(J+1)

)

.

Let u
(i)
\1 =

(

u
(i)
2 , . . . , u

(i)
J+1

)

= (0, 0, . . . , 0), i ∈ {0; 1}, de-

note the vector of length J which does not contain the first

element of either u(0) or u(1). Due to the linearity of the

convolutional code, it is sufficient to perform the proof for the

all-zero vector only.

The encoded vector x(0) of length N(J + 1) is

BPSK modulated onto the vector ẍ(0) with elements

ẍ
(0)
k = 1 − 2x

(0)
k = +1, k = 1, 2, . . . , N(J + 1) and x(1) is

modulated onto ẍ(1). After transmission over a channel with

additive white Gaussian noise of zero mean and variance

σ2
n = N0/2, the vector ÿ(0) is received with ÿ(0) = ẍ(0) + n,

and n =
(

n1, . . . , nN(J+1)

)

denoting the noise vector.

The extrinsic outputs of the MAP SISO decoder are the

probabilities that the decoded data bit ûk is either 0 or 1

under the condition that a priori knowledge on all data bits

except the one at position k and the entire received sequence

ÿ(0) are available. Without loss of generality, it is sufficient

to consider only the first bit position of the vectors, as a

consequence of the linearity of convolutional codes. Using

the Bayes theorem and the assumption that the data bits uk

are equiprobable, the extrinsic probabilities can be expressed

as (with ℓ ∈ {0; 1}) [12]

P (û1 = ℓ|ÿ(0),u
(0)
\1 ) =

p
(

ÿ(0)|u(ℓ)
)

p
(

ÿ(0)|u(0)
)

+ p
(

ÿ(0)|u(1)
)

with

p
(

ÿ(0)|u(0)
)

=

(

1√
2πσn

)N(J+1)

·
N(J+1)
∏

κ=1

e
− n2

κ
2σ2

n

p
(

ÿ(0)|u(1)
)

=

(

1√
2πσn

)N(J+1)

·
N(J+1)
∏

κ=1

e
− (nκ+dκ)2

2σ2
n

and dk elements of the vector d = ẍ(0) − ẍ(1), i.e.,

dk ∈ {0; +2}. Using vector notation, the extrinsic probabilities

can be expressed as

P (û1 = 0|ÿ(0),u
(0)
\1 ) =

exp
(

|n+d|2−|n|2
2σ2

n

)

1 + exp
(

|n+d|2−|n|2
2σ2

n

) (2)

P (û1 = 1|ÿ(0),u
(0)
\1 ) =

1

1 + exp
(

|n+d|2−|n|2
2σ2

n

) (3)
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with |n|2 =
∑N(J+1)

κ=1 n2
k and |n + d|2 defined similarly. By

using (2) and (3) the extrinsic L-values L[ext](û) can be

determined as

L[ext](û1) = L(û1|ÿ(0),u
(0)
\1 ) (4)

= ln





P (û1 = 0|ÿ(0),u
(0)
\1 )

P (û1 = 1|ÿ(0),u
(0)
\1 )





=
|n + d|2 − |n|2

2σ2
n

.

The factor |n + d|2 − |n|2 can be further simplified

|n + d|2 − |n|2 =

N(J+1)
∑

κ=1

(nκ + dκ)
2 −

N(J+1)
∑

κ=1

n2
κ

= 2

N(J+1)
∑

κ=1

nκdκ +

N(J+1)
∑

κ=1

d2
κ

= 2

N(J+1)
∑

κ=1

nκdκ + 4D̄C ,

using the fact that
∑N(J+1)

κ=0 d2
κ = 4D̄C (see definition of D̄C).

Therefore, we obtain

L(û1|ÿ(0),u
(0)
\1 ) = 2

D̄C

σ2
n

+

N(J+1)
∑

κ=1

dκ

σ2
n

nκ . (5)

Equation 5 states that the L-values of the extrinsic output are

composed by the sum of weighted Gaussian distributed noise

values and an offset 2D̄C/σ2
n. A random process composed

by sum of Gaussian distributed processes is again a Gaussian

process [13]. The mean of the resulting process is the sum of

the means of the sub-processes and the resulting variance is

the sum of the sub-processes’ variances. As the noise samples

nk have zero mean, the process resulting from the sum of all

noise samples has zero mean. As a consequence, the mean of

the L-values is only determined by the offset in (5) and the

mean µE of the L-value distribution is thus

µE = 2
D̄C

σ2
n

.

The variance of the noise samples nκ is σ2
n, but as the noise

samples nκ are scaled by dκ/σ2
n, the variances of the scaled

samples in the sum (5) amount to σ2
n · d2

κ

σ4
n

= d2
κ/σ2

n. Therefore,

the total variance σ2
E of the L-value distribution is

σ2
E =

N(J+1)
∑

κ=1

d2
κ

σ2
n

=
1

σ2
n

N(J+1)
∑

κ=1

d2
κ = 4

D̄C

σ2
n

=
µE

2
.

Corollary 3.3: Given a feed forward convolutional code C,

the hard decision bit error probability of the extrinsic out-

put after transmission over an AWGN channel with noise

variance σ2
n and after MAP SISO decoding is given by

P
[ext]
b

∣

∣

IA=1
= 1

2 erfc

(√
D̄C√
2σn

)

under the condition that perfect

a priori knowledge on the data bits u is available (IA = 1 bit).

Proof: Due to the linearity of the convolutional code C,

it can be assumed, without loss of generality, that the all-zero

codeword has been sent. It is known from Theorem 3.2 that the

pdf of the extrinsic information, given that the all-zero code-

word u(0) = (0, 0, . . . , 0) has been encoded resulting in the

transmitted BPSK modulated vector ẍ(0) = (+1, +1, . . . , +1),
is Gaussian distributed with mean µE = 2 D̄C

σ2
n

and variance

σ2
E = 4 D̄C

σ2
n

. Thus, the bit error probability of the extrinsic

output can be determined as

P
[ext]
b

∣

∣

∣

∣

IA=1

=

0
∫

−∞

pE(ξ)dξ =
1√

2πσE

0
∫

−∞

e
− (ξ−µE)2

2σ2
E dξ

=
1

2
erfc

(

µE√
2σE

)

=
1

2
erfc

(
√

D̄C√
2σn

)

.

Corollary 3.4: The mutual information IE between the data

bits u and the extrinsic output of the decoded bits û (L-value

representation) of a MAP SISO decoder for a feed forward

convolutional code C, given the conditions that perfect a priori

knowledge on the data bits u is available (IA = 1 bit), that

the data bits u are equiprobable, and that the transmission is

performed on an AWGN channel, depends solely on the noise

variance σ2
n and on the Hamming weight D̄C of the impulse

response. This mutual information can be expressed as

IE

∣

∣

∣

∣

IA=1

= 1 − σn
√

8πD̄C

+∞
∫

−∞

e
− (ξσ2

n−2D̄C)
2

8D̄Cσ2
n ld

(

1 + e−ξ
)

dξ .

Proof: Due to the linearity of convolutional codes,

we can assume, without loss of generality, that the all zero

sequence has been encoded and thus the (+1, +1 . . . , +1)
sequence has been transmitted. Therefore, according to The-

orem 3.2, the L-values of the extrinsic decoder output show

a Gaussian distribution with mean µE = 2 D̄C

σ2
n

and variance

σ2
E = 4 D̄C

σ2
n

. According to [5], the mutual information IE can

then be expressed as

IE(σE)=1 −
+∞
∫

−∞

e−((ξ−µE)2/(2σ2
E))

√
2πσE

ld
(

1 + e−ξ
)

dξ. (6)

Substituting µE = 2 D̄C

σ2
n

and σ2
E = 4 D̄C

σ2
n

into (6) proves the

corollary.

IV. NUMERICAL SIMULATION RESULTS

Figure 5 shows the result of Corollary 3.4, i.e., the mutual

information of the extrinsic output of a MAP SISO decoder

of a feed forward convolutional code C if perfect a priori

knowledge is available. It can easily be seen that the upper

right point of the EXIT characteristic (i.e., IE = 1 bit, given

IA = 1 bit) can closely be reached only for large D̄C and

in good channel conditions. For terminated (or tailbiting)

recursive convolutional codes, this plot would be a flat surface,

as D̄C tends to infinity in the case of recursive codes [12].
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Figure 6 shows the hard decision bit error probability of

the extrinsic output of the MAP SISO decoder if perfect

a priori knowledge is available (IA = 1 bit). The maximum

mutual information of the EXIT characteristics in Fig. 2 (see

also Table I) can be read off in Fig. 5 using the information

in Table II. Table II also contains the calculated values of

P
[ext]
b and IE

∣

∣

IA=1
for a channel quality of Es

N0
= −5 dB. It

can be seen that the calculated maximum mutual information

almost perfectly matches the measured values of Table I. The

differences can be explained by numerical inaccuracies during

the measurement and/or by the finite histogram resolution.

TABLE II

IMPULSE RESPONSE HAMMING WEIGHTS FOR SOME SELECTED

CONVOLUTIONAL CODES AND NUMERICAL RESULTS FOR

Es/N0 = 1/(2σ2
n) = −5 DB

Generator polynomials memory J D̄C P
[ext]
b

IE

˛

˛

˛

˛

IA=1

(3, 2)8 1 3 0.0842 0.7038
(7, 5)8 2 5 0.0377 0.8592

(17, 15)8 3 7 0.0177 0.9315
(17, 15, 13)8 3 10 0.0060 0.9762

(23, 35)8 4 7 0.0177 0.9315
(53, 75)8 5 9 0.0085 0.9662

(133, 171)8 6 10 0.0060 0.9762

V. CONCLUSION

In our contribution, we analyzed the behavior of the EXIT

characteristics of feed forward convolutional codes. Simula-

tions have shown that the mutual information at the extrin-

sic output of a MAP SISO decoder for feed forward and

non-terminated recursive convolutional codes does not reach

IE = 1 bit if perfect a priori information is available – a

fact that has already been noted in the literature. We give

an analytical expression of the attainable mutual information

if perfect a priori knowledge is available for the case of feed

forward convolutional codes. This maximum attainable mutual

information solely depends on the channel noise variance

and the Hamming weight of the code impulse response. We

give an easy explanation of this property using the Trellis

representation of the convolutional code. Furthermore, we have

shown that the extrinsic output of a MAP SISO decoder is

Gaussian distributed if the channel noise is Gaussian, the data

bits are equiprobable, and the a priori information on the data

bits is considered to be perfect. Additionally, we have derived

an analytical expression of the mutual information attainable if

perfect a priori knowledge is available as well as an expression

of the hard decision bit error rate of the extrinsic output in

this case. The paper concludes with an evaluation of different

codes and the verification of the theoretical results.
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