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ABSTRACT

In this paper we present a new model-based method to code
the transform coef cients of audio signals. The histogram of trans-
form coef cients is approximated by a generalized Gaussian model
for ef cient model-based bit allocation and the spectrum is coded
by scalar quantization followed by arithmetic coding. An example
coder operating at 16 kHz and using predictive modi ed discrete
cosine transform (MDCT) coding is described. We compare the per-
formance of the proposed coder with ITU-T G.722.1. Objective and
subjective quality results are presented. The proposed coder is better
than ITU-T G.722.1 at 24 kbit/s and equivalent at 32 kbit/s.

Index Terms— Transform coding, audio coding, modeling.

1. INTRODUCTION

The telecommunication market is currently evolving towards new
multimedia services over IP. In particular, many efforts are focused
on improving audio quality by moving from narrowband speech cod-
ing (300-3400 Hz) to wideband speech coding (50-7000 Hz). Be-
sides extending audio bandwidth, quality can be improved by opti-
mizing the quantization of existing coding models. ITU-T G.722.1
Recommendation [1] is an example of wideband speech and audio
coding system that is used in audio and video conferencing appli-
cations. This coder is built upon modi ed discrete cosine transform
(MDCT), scalar quantization and vector Huffman coding of normal-
ized MDCT coef cients. We propose in this work a different coding
method for MDCT coef cients, with the objective to improve coding
ef ciency.

The main contribution of this work lies in the use of arithmetic-
coded scalar quantization and the application of generalized Gaussian
modeling for ef cient bit allocation. Generalized Gaussian modeling
is commonly used in image and video coding [2] but its application
to speech and audio coding is quite new.

This paper is organized as follows. We present the generalized
Gaussian model in Section 2, we give an modeling example for nor-
malized MDCT coef cients. Quantization with model-based alloca-
tion and arithmetic coding is described in Section 3. An example
coder using the proposed quantization is given in Section 4. Ob-
jective and subjective quality results are presented and discussed in
Section 5 before concluding in Section 6.

This work was supported in part by the European Union under Grant
FP6-2002-IST-C 020023-2 FlexCode.

2. GENERALIZED GAUSSIANMODELING

2.1. De nition of the generalized Gaussian pdf

The probability density function (pdf) of a zero-mean generalized
Gaussian random variable z of standard deviation σ is given by [2]:

gα(z) =
A(α)

σ
e−|B(α)z/σ|α , (1)

where α is a shape parameter describing the exponential rate of de-
cay and the tail of the density function. The parameters A(α) and
B(α) are given by:

A(α) =
αB(α)

2Γ(1/α)
and B(α) =

�
Γ(3/α)

Γ(1/α)
, (2)

where Γ(.) is the Gamma function de ned as:

Γ(α) =

� ∞

0

e−ttα+1 dt. (3)

The Laplacian and Gaussian distributions correspond to the special
case α = 1 and 2 respectively. The generalized Gaussian model is
useful to approximate symetric unimodal distributions.

2.2. Estimation of the shape parameter α

Methods to estimate the shape parameterα of a generalized Gaussian
random variable are reviewed in [3]. We use hereafter the open-
loop method proposed by Mallat to estimate α. For a generalized
Gaussian variable z, a relation between the varianceE(z2), the mean
absolute value E(|z|) and the shape parameter α is given by [4]:

E(|z|)�
E(z2)

=
Γ(2/α)�

Γ(1/α)Γ(3/α)
= F (α) (4)

The shape parameter α can be therefore estimated as:

α̂ = F−1

�
m̂1√
m̂2

�
(5)

where m̂1 =
1
n

�n
i=1 z2

i and m̂2 =
1
n

�n
i=1 |zi| are measured on

available data {z1, . . . , zn}.

2.3. Estimation examples for speech

Figure 1 shows how the distribution of normalized MDCT coef -
cients can be approximated by a generalized Gaussian model. Both
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voiced and unvoiced speech examples are considered. The input sig-
nals in time domain (top) are sampled at 16 kHz and transformed by
MDCT with a sinusoidal window of 40 ms. The MDCT spectrum
of a given frame (middle), comprising 320 coef cients, is normal-
ized by its root mean square (r.m.s.). The histogram of normalized
MDCT coef cients is modeled by a generalized Gaussian pdf (bot-
tom). The estimated shape parameter for voiced speech is α = 0.29
and for unvoiced speech it is α = 0.53, so the value of α is some-
how related to the voicing of the signal. Note that the value of α
would be closer to 2 (Gaussian case) for unvoiced speech if the sig-
nals in time domain were linear predictive residuals. However these
examples indicate that generalized Gaussian modeling can provide a
good approximation of the MDCT spectrum distribution for speech
signals. These observations can be extended to music signals.
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Fig. 1. Examples of MDCT coef cient modeling.

3. ENTROPY-CODED SCALAR QUANTIZATIONWITH
MODEL-BASED ALLOCATION

We follow here the notations of [5] with regards to transform cod-
ing and bit allocation. We consider the encoding of N zero-mean
random variables x1, . . . , xN of variances σ2

1 , . . . , σ2
N > 0 with re-

spect to the mean square error criterion. The variables xi are coded
by scalar quantization with the same step size q. We assume that the
sequence of integers obtained after scalar quantization is encoded by
ideal entropy coding.

In case of high resolution the mean square error D resulting for

the encoding of N random variables xi is given by [5]:

D ≈
N�

i=1

hiσ
2
i 2
−2bi (6)

where the constant hi is a function of the pdf of the variable xi and
bi is the number of bits per sample used to code xi. We assume that
the variables xi have a generalized Gaussian pdf, in this case hi is
given by [2]:

hi =
Γ(1/αi)

3

3α2
iΓ(3/αi)

e2/αi (7)

where αi is the shape parameter of xi. For a given bit allocation
B in bits per sample, the bit allocation problem is to minimize the
distortion D under the constraint that

�N
i=1 bi ≤ B. The distortion

D given in Eq (6) can be minimized with Lagrangian techniques.
The criterion J(bi, λ) is de ned as

J(bi, λ) = D − λ

�
N�

i=1

bi −B

�
(8)

where λ is the Lagrange multiplier. It can be shown that the optimal
λ is given by [2]:

λopt = 2 ln(2)

N�
i=1

σ2
i hi2

−2bi (9)

With this value of λ the distortion D becomes:

D =
λopt

2 ln(2)
(10)

Furthermore for high-resolution scalar uniform quantization with step
size q, we have [5]:

D =
q2

12
(11)

From (10) and (11) we nd that the optimal stepsize is:

q =

�
6λopt

ln(2)
(12)

In this work, a single shape parameter α is estimated (i.e. αi =
α) and the entropy coding is implemented using stack-run coding
[6], which has been originally developed for image coding. Stack-
run coding represents a sequence of signed integers by adaptive arith-
metic coding using a quaternary alphabet (0, 1, +, -) and switched
contexts. This entropy coder implies a biais in bit consumption.

To verify the xed bit allocation constraint the step size q is de-
termined in practice in two steps:

1. Estimation of optimal step size q as in Eq (12).
2. Step size re nement by bisection search to verify the bit allo-
cation constraint

�N
i=1 bi ≤ B.

4. EXAMPLE CODER USING THE PROPOSEDMETHOD

4.1. Encoder

The proposed coder is illustrated in Figure 2. The encoder employs
a linear-predictive weighting lter followed by MDCT coding. The
input sampling frequency is 16000 Hz, while the frame length is
20 ms with a lookahead of 25 ms. The effective bandwidth of the
input signal is considered to be 50-7000 Hz. An elliptic high-pass
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Fig. 2. Block diagram of the proposed predictive transform coder.

lter (HPF) is applied to the input signal x(n) in order to remove the
frequency component under 50 Hz. The resulting signal xhpf (n) is
then preemphasized by 1 − αz−1 with α = 0.75. An 18th order
LPC analysis described in [7] is performed on the preemphasized
signal xpre(n). The resulting LPC coef cients are quantized with 40
bits using a parametric method based on a Gaussian mixture model
(GMM) [8] in the linear spectrum frequency (LSF) domain. The
pre-emphasized signal is ltered by a perceptual weighting lter:

W (z) =
Â(z/γ)

1− βz−1
(13)

where β = 0.75 is a tilt parameter and γ = 0.92. The coef -
cients of W (z) are updated every 5 ms by interpolating LSF para-
meters. AnMDCT analysis is applied on the weighted signal xw(n).
The MDCT is implemented using the fast algorithm of [9] which is
based on a complex FFT. Then the MDCT coef cients X(k) are
pre-shaped to emphasize low frequencies, in a way similar to 3GPP
AMR-WB+ [10]. The pre-shaped coef cients Xpre(k) are divided
by a step size q and the resulting spectrum Y (k) is encoded by scalar
quantization. For a given spectrum Y (k) the spectrum Ỹ (k) after
scalar quantization is de ned as:

Ỹ (k) = [Y (k)] =

�
Xpre(k)

q

�
(14)

where [.] represents the rounding to the nearest integer. Only the rst
280 coef cients of the Y (k) spectrum corresponding to the 0-7000
Hz band are coded; the last 40 coef cients are discarded. The integer
sequence Ỹ (k) is encoded by stack-run coding [6]. The rate control
consists in nding the appropriate step size q so that the number of
bits, nbit, used for stack-run coding matches the allocated bit budget
as described in Section 3. The distribution of Xpre(k) is approxi-
mated by a generalized Gaussian model and the shape parameter α
is estimated using Mallat’s method. Then a noise level estimation is
performed on the spectrum Y (k) after stack-run coding. The noise

oor σ is estimated as:

σ = r.m.s. {Xpre(k) |Y (k) = 0} (15)

with the additional constraint that Y (k) must belong to a long zero
run to be really considered in the above r.m.s. calculation. The step
size q is scalar quantized in log domain with 7 bits. The noise oor
σ is quantized by coding the ratio σ/q̂ in linear domain with 3 bits.

4.2. Decoder

The decoded LSF are interpolated every 5 ms and converted to LPC
coef cients. The reconstructed spectrum Ŷ (k) is given by:

Ŷ (k) = q̂ Ỹ (k) (16)

where Ỹ (k) is found by stack-run decoding. In order to improve
quality, noise injection is applied on Ŷ (k). A noise of magnitude±σ̂

is injected in all zero sequences longer than 20 coef cients in Ŷ (k).
The spectrum X̂(k) is de-shaped in a way similar to 3GPP AMR-
WB+ and transformed in time domain using the inverse MDCT and
overlap-add algorithm described in [9]. An inverse perceptual lter
W (z)−1 is applied on x̂w(n) in order to shape the coding noise in-
troduced in the MDCT domain. The response ofW (z)−1 is similar
to a short-term masking curve and its coef cients are updated every
5 ms by LSF interpolation. The signal x̃(n) is deemphasized to nd
the synthesis x̂(n).

4.3. Bit allocation

The parameters of the proposed coder are the Line Spectrum Fre-
quency (LSF) parameters, the step size, and the noise oor level.
The bit allocation to the parameters is detailed in Table 1, where
Btot is the total number of bits per frame. For instance at 24 kbit/s,
Btot = 480 bits. The allocation (in bits per sample) to stack-run
coding is B = (Btot − 50)/280.
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Table 1. Bit allocation for the coding scheme.
Parameter Number of bits
LSF 40
Step size q 7
Noise oor σ 3
Stack-run coding Btot-50
Total Btot

5. EXPERIMENTAL RESULTS

A database of 24 clean speech samples in French language (6 male
and female speakers×4 sentence-pairs) and 16 clean music samples
(4 types×4 samples) of 8 seconds is used. These samples are sam-
pled at 16 kHz, preprocessed by the P.341 lter of ITU-T G.191A
and normalized to -26 dBov using the P.56 speech voltmeter.

5.1. Objective quality results

WB-PESQ [11] is used to evaluate the quality of the proposed coder
and compare it with ITU-T G.722.1. Only clean speech samples are
used to compute the average WB-PESQ scores at various bitrates.
The bit rate varies from 16 to 40 kbit/s with a step of 4 kbit/s for our
coder. ITU-T G722.1 is tested at 24 and 32 kbit/s. Figure 3 shows
the WB-PESQ scores obtained for the two coders, by considering
separately male and female cases. These results suggest that the
quality of the proposed coder is better than ITU-T G.722.1 at 24
and 32 kbit/s (0.2-0.3 MOS-LQ0 difference). Note that these results
show a clear male/female dependency, which was already observed
in formal ITU-T G.722.1 subjective test results [12].
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Fig. 3. Average WB-PESQ score.

5.2. Subjective quality results

Two informal AB tests at 24 kbit/s have been conducted: one for
speech, another for music. In total 8 experts participated in the test.
Figure 4 shows the results. The proposed coder was preferred for
music in 53% of cases and for speech in 48% of cases. The results
con rmed the objective quality results at 24 kbit/s. Subjective tests
have also been conducted at 32 kbit/s but the quality improvement of
the proposed coder is less signi cant and the two coders are equiv-
alent. The proposed coder is better than G.722.1 at 24 kbit/s and
equivalent at 32 kbit/s, but it has a higher complexity than G.722.1.

The discrepancy between objective and subjective results at 24
and 32 kbit/s can be explained by the large sensitivity of WB-PESQ
in low frequencies – indeed the proposed coder has in general a lower
distortion in low frequencies –, and by the limited applicability of
WB-PESQ to compare distortions of different natures.

Fig. 4. AB test results at 24 kbit/s.

6. CONCLUSION

In this paper we proposed anMDCT coder with generalized Gaussian
modeling for wideband speech and audio signals sampled at 16 kHz.
This coder was compared with ITU-T G.722.1. The quality im-
provement is mainly due to the use of arithmetic coding (instead of
Huffman coding) and perceptual ltering. The generalized Gaussian
model allows to minimize the complexity of bit allocation by esti-
mating ef ciently the quantization stepsize. The proposed spectrum
coding technique could be applied to code FFT coef cients in order
to improve the quality of TCX modes of 3GPP AMR-WB+.
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