Modern Techniques for Flexible, Iterative Source-Channel Decoding

Laurent Schmalen and Peter Vary

FlexCode Public Seminar
June 6, 2007
Overview

- Soft Decision Source Decoding
- The Turbo Concept of Iterative Decoding
- Generation of Extrinsic Information for the Source Decoder
- Iterative Source-Channel Decoder
- Adaptive, Flexible, Multi-Mode Iterative Source-Channel Decoding scheme
Introduction

• Channel coding cannot prevent occurrence of residual bit errors in the case of adverse channel conditions leading to a severe degradation of the signal quality
• Annoying effects can be reduced or even eliminated by means of error concealment
• Real source coding schemes contain residual redundancy for reasons of delay, complexity and nonstationarity

• Shannon 1948:

„However, any redundancy in the source will usually help if it is utilized at the receiving point. [...] redundancy will help combat noise.“
Conventional Transmission

- Quantization & Index Assignment
- Interleaver
- Channel Encoder
- Interleaver
- Modulator / Mapper

Parameter Extraction

Source

u

$p(u)$

u_1

u_K

t

t
Conventional Transmission

- **Transmitter**
 - Quantization & Index Assignment
 - Interleaver
 - Channel Encoder
 - Interleaver
 - Modulator / Mapper

 \[
 \text{Parameter SNR} = \frac{E\{u^2\}}{E\{(u - \hat{u})^2\}}
 \]

- **Receiver**
 - Demodulator / Demapper
 - Channel Decoder
 - Parameter Lookup

 \[
 \hat{u}
 \]
Exploitation of residual redundancy for quality improvement

1D \textit{a priori} knowledge (parameter distribution)

\begin{align*}
\mathbf{u} &= (u_1, u_2, \ldots) \\
\mathbf{x} &= (x_1, x_2, \ldots) \\
\mathbf{y} &= \\
\mathbf{z} &= \\
\mathbf{c} &= (c_1, c_2, \ldots) \\
\hat{u} &= \\
\end{align*}

\textit{a posteriori} probabilities:

\begin{equation}
P(\hat{u} | \mathbf{c}) = K \cdot P(c | \mathbf{x}) \cdot P(\hat{u})
\end{equation}

can be calculated using channel statistics

normalization constant

[Fingscheidt01]
Soft Decision Source Decoding

Exploitation of residual redundancy for quality improvement

1D *a priori* knowledge (parameter distribution)

\[u = (u_1, u_2, \ldots) \]

\[x = (x_1, x_2, \ldots) \]

\[y \]

\[z \]

\[c = (c_1, c_2, \ldots) \]

\[\hat{u} \]

\[P(\hat{u}|c) = K \cdot P(c|\hat{u}) \cdot P(\hat{u}) \]

* a posteriori * probabilities: \(P(\hat{u}|c) \)

Normalization constant can be calculated using channel statistics

Fingscheidt01
Soft Decision Source Decoding

Exploitation of residual redundancy for quality improvement

Parameter estimation instead of table lookup
(MMSE estimation using \textit{a posteriori} probabilities)

\[
\hat{\mathbf{u}} = \sum_{i=1}^{Q} \tilde{\mathbf{u}}^{(i)} \cdot P(\tilde{\mathbf{u}}^{(i)} | \mathbf{c})
\]
Exploitation of residual redundancy for quality improvement

1D *a priori* knowledge (parameter distribution)

2D *a priori* knowledge (parameter correlation)

a posteriori probabilities can be calculated by the recursion:

\[
P(\bar{u}_t|c) = K \cdot P(c_t|x_t) \cdot \sum_{i=1}^{Q} P(x_t|x_{t-1}) \cdot P(\bar{u}_{t-1}|c)
\]

channel statistics

[Fingscheidt01]
Soft Decision Source Decoding

Exploitation of residual redundancy for quality improvement

1D \textit{a priori} knowledge (parameter distribution)

2D \textit{a priori} knowledge (parameter correlation)

A \textit{posteriori} probabilities can be calculated by the recursion:

\[
P(\bar{u}_t | \bar{c}) = K \cdot P(c_t | \bar{u}_t) \cdot \sum_{i=1}^{Q} P(\bar{u}_t | \bar{u}_{t-1}) \cdot P(\bar{u}_{t-1} | \bar{c})
\]

[Fingscheidt01]
Soft Decision Source Decoding

Exploitation of residual redundancy for quality improvement

1D \textit{a priori} knowledge (parameter distribution)

2D \textit{a priori} knowledge (parameter correlation)

Parameter estimation instead of table lookup
(MMSE estimation using \textit{a posteriori} probabilities)

\[
\hat{u}_t = \sum_{i=1}^{Q} \bar{u}_t^{(i)} \cdot P(\bar{u}_t^{(i)} | C)
\]

[Fingscheidt01]
Iterative Channel Coding

• Timeline of iterative decoding techniques
 – LDPC codes introduced in 1963 [Gallager63] but forgotten due to the relatively high complexity at that time
 – Turbo codes invented in 1993 [Berrou93]. Allow near-Shannon limit decoding with moderate complexity
 – LDPC codes rediscovered in 1998 [MacKay98]. Decoding is also performed iteratively using belief propagation
 – Extension of the iterative decoding to other receiver components, e.g.
 • equalization (Turbo Equalization) [Douillard95]
 • modulation (BICM-ID) [Xi98]
 • multi-user detection (Turbo-MUD) [Alexander98]
 • source decoding (ISCD) [Adrat01], [Goertz01], [Guyader01]
Turbo Codes, Concept

Concatenated Encoding

Iterative Turbo Decoding

advantages by iterative feedback!

[Berrou93, Benedetto98]
Extrinsic Information

“Information from neighboring bit positions”

- Example: Parity Check Code

\[y_P = y_1 \oplus y_2 \]

- Extrinsic information:
 - transmitter \(y_1 = y_2 \oplus y_P \)
 - receiver \(\tilde{z}_{e1} = z_2 \oplus z_P \)
Extrinsic Information from SDSD

- Generation of extrinsic information by the soft decision source decoder [Adrat03]

Information from channel decoder:
2 rightmost bits are 01
Extrinsic Information from SDSD

• Generation of extrinsic information by the soft decision source decoder [Adrat03]

Information from channel decoder:
2 rightmost bits are 01
Extrinsic Information from SDSD

- Generation of extrinsic information by the soft decision source decoder [Adrat03]

Information from channel decoder:
2 rightmost bits are 01

This information can be fed back to the channel decoder to improve channel decoding!

\[P(x_1 = 0 | (x_2, x_3) = (0, 1)) < P(x_1 = 1 | (x_2, x_3) = (0, 1)) \]
Extrinsic Information from SDSD

- Generation of extrinsic information by the soft decision source decoder [Adrat03]

Usually, the bits are not perfectly known!

→ marginalization and application of Bayes theorem

$$P(x_1 = 1 | c_{\backslash 1}) = C \cdot \sum_{x_{\backslash 1}} P(x_{\backslash 1}, x_1 = 1) \cdot P(c_{\backslash 1} | x_{\backslash 1})$$

Bit pattern X

x_1 $X_{\backslash 1}$

channel transition probabilities

a priori knowledge

000 001 010 011 100 101 110 111
Extrinsic Information from SDSD

- Generation of extrinsic information by the soft decision source decoder \([\text{Adrat03}]\)

 Usually, the bits are not perfectly known!

 → marginalization and application of Bayes theorem

\[
P(x_1 = 1 | c_\backslash_1) = C \cdot \sum_{x_\backslash_1} P(x_\backslash_1, x_1 = 1) \cdot P(c_\backslash_1 | x_\backslash_1)
\]

- Bit pattern \(X\)
 - a priori knowledge
 - channel transition probabilities
• Correlation of the source is exploited by the SDSD

![Diagram showing $p(u_t)$ and $p(u_t|u_{t-1})$]

• The quantization of the source modelled as Markov process can be represented using a trellis diagram
• Trellis representation of the source

\[x_{t-1} = (0, 0, 0) \]
\[x_{t-1} = (0, 0, 1) \]
\[x_{t-1} = (1, 1, 0) \]
\[x_{t-1} = (1, 1, 1) \]

\[x_t = (0, 0, 0) \]
\[x_t = (0, 0, 1) \]
\[x_t = (1, 1, 0) \]
\[x_t = (1, 1, 1) \]

States correspond to quantizer reproduction levels
State transitions correspond to conditional probabilities

Decoding using the BCJR (MAP) algorithm
[Bahl et al. 74], [Heinen 00], [Adrat 05]

• The quantization of the source modelled as Markov process can be represented using a trellis diagram
Extrinsic Information from a second decoder”

Extrinsic from 2nd decoder → Turbo component 1 → Extrinsic for 2nd decoder

A priori knowledge → Turbo component 1

Soft-information from channel → Turbo component 1 → A posteriori
Iterative Exchange of Extrinsic Information

- a posteriori decision after several iterations
Iterative Decoder Concepts

• Bit-Interleaved Coded Modulation & Iterative Decoding [Xi98]

• Iterative Source-Channel Decoding [Adrat01]

• Turbo DeCoderul [Clevorn05]
Iterative Source-Channel Decoding

- Design constraint: Parameter SNR e.g. $P^{[\text{ref}]} > 13$ dB

![Graph showing iterative decoding performance](image)

AWGN / BPSK Modulation
- 250 parameters/frame
- auto-correlation $\rho = 0.9$
- 3 Bit Lloyd-Max quantizer
- $r_c = 1/2$ convolutional code with 8 trellis states

SDSD:
- first order Markov model

ISCD:
- recursive non-systematic convolutional code
- EXIT optimized index assignment
- 10 iterations
Audio Examples

- Audio examples
 - improvement by iterative decoding

<table>
<thead>
<tr>
<th></th>
<th>Speech</th>
<th>Music</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 iteration</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 iterations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 iterations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 iterations</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A-law PCM with 8-bit quantization

AWGN / BPSK Modulation
- 44.1 kHz sampling rate
- 300 samples/frame
- $r_C = 1$ convolutional code with 8 trellis states
- redundant $r_{IA} = \frac{1}{2}$ block coded index assignment
- $E_s/N_0 = 1$ dB (BER = 5.5%)

SDSD:
- exploiting unequal parameter distribution only (zeroth order apriori knowledge)

→ further improvement by exploiting correlation
Redundant Index Assignments

- Highly Redundant Index Assignments [Adrat05]

\[Q = 8 \]
\[w = 3 \]
\[c = 6 \]

\[r_C = w/c = 1/2 \]
\[r_C = w^*/c = 1 \]
Iterative Source-Channel Decoding

- Extension towards a multi-mode system by variable source encoding (Q quantizer levels)
- Fixed channel coding with rate $r = 1$

AWGN channel
- BPSK Modulation
- 250 parameters/frame
- auto-correlation $\rho = 0.9$
- Lloyd-Max quantizer with Q levels
- 6 bits per parameter
- convolutional code with 8 trellis states
- redundant index assignment

![Graph showing parameter SNR vs. E_s/N_0 (dB)]

- Optimized ISCD ($r_C=1$) block coded IA, 25 iter.
- $Q = 8$ quantizer levels
- Theoretical Limit
- Classic ISCD ($r_C=1/2$) optimized IA, 10 iter.
Iterative Source-Channel Decoding

- Extension towards a multi-mode system by variable source encoding (Q quantizer levels)
- Fixed channel coding with rate \(r = 1 \)

Plot Description

- **AWGN channel**
 - BPSK Modulation
 - 250 parameters/frame
 - auto-correlation \(\rho = 0.9 \)
 - Lloyd-Max quantizer with \(Q \) levels
 - 6 bits per parameter
 - convolutional code with 8 trellis states
 - redundant index assignment

Graph Details

- **Optimized ISCD \((r_c=1)\)**
 - block coded IA, 25 iter.
 - \(Q = 8 \) quantizer levels

- **Theoretical Limit**

- **Classic ISCD \((r_c=1/2)\)**
 - optimized IA, 10 iter.

Axes

- \(E_s/N_0 [\text{dB}] \)
- Parameter SNR \(\mathcal{P} [\text{dB}] \)
Iterative Source-Channel Decoding

- Extension towards a multi-mode system by variable source encoding (Q quantizer levels)
- Fixed channel coding with rate $r = 1$

AWGN channel
- BPSK Modulation
- 250 parameters/frame
- auto-correlation $\rho = 0.9$
- Lloyd-Max quantizer with Q levels
- 6 bits per parameter
- convolutional code with 8 trellis states
- redundant index assignment
Conclusions

• Exploitation of residual source redundancy for soft decision source decoding
• Determination of extrinsic information by using residual source redundancy
• Iterative decoding concept extended to the source decoding step
 – Near capacity decoding of quantized, correlated sources
 – Adaptivity/Flexibility by using a multi-mode transmission scheme
Modern Techniques for Flexible, Iterative Source-Channel Decoding

Laurent Schmalen and Peter Vary

FlexCode Public Seminar
June 6, 2007